Predicted extirpation of the dominant demersal fish in a large marine ecosystem: Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence

2008 ◽  
Vol 65 (11) ◽  
pp. 2315-2319 ◽  
Author(s):  
Douglas P. Swain ◽  
Ghislain A. Chouinard

Atlantic cod ( Gadus morhua ) was the dominant demersal fish and most important predator in the southern Gulf of St. Lawrence ecosystem as recently as the 1980s. However, productivity of southern Gulf cod has declined, and the population is no longer viable even in the absence of fishing. We conducted population projections taking into account uncertainty in current abundance-at-age and uncertainty or variability in each of the components of population productivity (i.e., rates of recruitment, individual growth, and adult natural mortality). We defined extirpation as a spawning stock biomass less than 1000 t (<0.3% of historical levels). Based on these projections, at its current level of productivity, this population is certain to be extirpated within 40 years in the absence of fishing and in 20 years with fishery removals at the level of the total allowable catch in 2007 and 2008 (2000 t). Elevated natural mortality of adult cod (M) is the main factor contributing to the low productivity of this stock. Because M appears to be increasing, our projections are likely overly optimistic.

1993 ◽  
Vol 50 (8) ◽  
pp. 1591-1598 ◽  
Author(s):  
Ransom A. Myers ◽  
Noel G. Cadigan

We test the hypothesis that the interannual variability of the density-independent component of juvenile natural mortality is a major source of variability in abundance of marine demersal fish. Our tests use data on populations for which there are research surveys consisting of two simultaneous estimates of abundance of young juveniles soon after settlement and two more simultaneous estimates of the same cohort a year later. We applied our test to 14 populations of Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus), plaice (Pleuronectes platessa), and sole (Solea vulgaris). We conclude that, in all populations examined except North Sea sole, there was very little or no interannual variability in the density-independent component of juvenile mortality.


2000 ◽  
Vol 57 (4) ◽  
pp. 826-836 ◽  
Author(s):  
Jean-Denis Dutil ◽  
Yvan Lambert

The extent of energy depletion was assessed in Atlantic cod (Gadus morhua) in spring and early summer (1993-1995) to assess relationships between poor condition and natural mortality. Several indices of condition were compared in wild fish in the northern Gulf of St. Lawrence and in fish exposed to a prolonged period of starvation in laboratory experiments. Discriminant analyses classified only a small fraction of the wild fish as similar to cod that did not survive and a much larger fraction as similar to cod that survived starvation. This percentage increased from April to May and peaked in June 1993 and 1994. Condition factor and muscle somatic index allowed a clear distinction between live and dead fish. Muscle lactate dehydrogenase activity suggested that cod had experienced a period of negative growth early in 1993, 1994, and 1995. Fish classified as similar to starved individuals were characterized by a higher gonad to liver mass ratio than others. Reproduction may have a negative impact on survival not only in spring but also later into summer, as some individuals were found not to have recovered by late summer. This study shows that natural mortality from poor condition contributed to lower production in the early 1990s.


2007 ◽  
Vol 64 (8) ◽  
pp. 1130-1142 ◽  
Author(s):  
Sondre Aanes ◽  
Steinar Engen ◽  
Bernt-Erik Sæther ◽  
Ronny Aanes

Models for fluctuations in size of fish stocks must include parameters that describe expected dynamics, as well as stochastic influences. In addition, reliable population projections also require assessments about the uncertainties in estimates of vital parameters. Here we develop an age-structured model of population dynamics based on catch-at-age data and indices of abundance in which the natural and fishing mortality are separated in a Bayesian state–space model. Markov chain Monte Carlo methods are used to fit the model to the data. The model is fitted to a data set of 19 years for Northeast Arctic cod (Gadus morhua). By simulations of the fitted model we show that the model captures the dynamical pattern of natural mortality adequately, whereas the absolute size of natural mortality is difficult to estimate. Access to long time series of high-quality data are necessary for obtaining precise estimates of all the parameters in the model, but some parameters cannot be estimated without including some prior information. Nevertheless, our model demonstrates that temporal variability in natural mortality strongly affects perceived variability in stock sizes. Thus, using estimation procedures that neglect temporal fluctuations in natural mortality may therefore give biased estimates of fluctuations in fish stock sizes.


2006 ◽  
Vol 46 (1) ◽  
pp. 74-82 ◽  
Author(s):  
V. M. Borisov ◽  
A. A. Elizarov ◽  
V. D. Nesterov

2019 ◽  
Vol 76 (6) ◽  
pp. 937-949 ◽  
Author(s):  
Lisha Guan ◽  
Yong Chen ◽  
James A. Wilson ◽  
Timothy Waring ◽  
Lisa A. Kerr ◽  
...  

To evaluate the influence of spatially variable and connected recruitments at spawning component scale on complex stock dynamics, a typical agent-based complex stock was modeled based on the Atlantic cod (Gadus morhua) stock in the Gulf of Maine. We simulated three scenarios with different degrees of connectivity (i.e., individual exchange) between the spatially variable recruitments of 36 spawning components within four subpopulations under the stock. Subsequently, the temporal trends were compared for different scenarios in age-1 recruitment, spawning stock biomass, and local depletion proportion of the overall complex stock and the individual subpopulations. Results show that increased recruitment connectivity from 0.1–0.2 to 0.6–0.8 between various components tends to increase the productivity and stability of a complex stock at local and global scales and reduce the proportion of depleted components due to overfishing. Moreover, depletions of less productive components may occur without a substantial reduction in the overall complex stock biomass and recruitment.


1993 ◽  
Vol 50 (4) ◽  
pp. 734-742 ◽  
Author(s):  
A. F. Sinclair

An approach is presented for investigating the interactions between fishing fleets that compete by exploiting different age-groups of the same resource population. The term "partial recruitment" (PR) is used to describe the age-specific exploitation pattern experienced by a population, either from individual fishing fleets or the combined effects of several fleets. Methods are presented to calculate catch quotas for the individual fleets if the management objective is to keep fleet effort constant, or alternatively to predict catch rates by fleet if the allocation rules are based on a percentage sharing of the total allowable catch (TAC) among fleets. Simulations based on an Atlantic cod (Gadus morhua) fishery on the Nova Scotian Shelf is used to illustrate the method. The results indicate the importance of considering differences in PR among competing fishing fleets when setting catch quotas. The relative effort exerted by the fleets will affect target fishing mortalities. The fleet that concentrates on younger fish can intercept recruitment. Since the fleets exploit different age-groups, changes in fishable biomass due to recruitment variation are lagged, and fishing success will vary among fleets. Understanding the dynamics of PR may help explain why certain fleets either exceed or fall short of catch quotas.


Parasitology ◽  
2002 ◽  
Vol 124 (7) ◽  
pp. 153-163 ◽  
Author(s):  
K. MACKENZIE

This paper reviews the work published over the past decade on the use of parasites as biological tags in population studies of marine fish, mammals and invertebrates. Fish hosts are considered in taxonomic and ecological groups as follows: demersal, anadromous, small pelagic, large pelagic and elasmobranch. Most studies were carried out on demersal fish, particularly on members of the genera Merluccius (hake), Sebastes (rockfish) and on Atlantic cod Gadus morhua L., but Pacific salmonids and small pelagic fish of the genus Trachurus are also well-represented. A current multidisciplinary study of the population biology of horse mackerel Trachurus trachurus in European waters, which includes the use of parasites as tags, is described. Two studies recognize the potential for using parasites as tags for cetaceans but, in spite of the considerable potential for this approach in population studies of elasmobranchs, no original study has been carried out on this group for over ten years. Studies of parasites as tags for marine invertebrates have concentrated on squid. Recent trends in the use of parasites as biological tags for marine hosts are discussed.


2014 ◽  
Vol 1 (2) ◽  
pp. 140075 ◽  
Author(s):  
Anna Kuparinen ◽  
Jeffrey A. Hutchings

Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite—a demographic Allee effect. Northwest Atlantic cod ( Gadus morhua ) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.


1999 ◽  
Vol 56 (9) ◽  
pp. 1612-1623 ◽  
Author(s):  
Jeffrey A Hutchings

A stochastic, age-structured life history model was used to examine how age at maturity (theta), pre- (Zimm) and postreproductive (Zmat) mortality, and postreproductive growth rate can affect maximum reproductive rates of fish at low population size. Simulations suggest that annual (r) and per-generation (R0) metrics of population growth for Newfoundland's northern Grand Bank Atlantic cod, Gadus morhua, are primarily influenced by changes to mortality prior to and following reproduction. At observed weights at age and Zmat = 0.2, r ranged between 0.135 and 0.164 for cod maturing at between 4 and 7 years. Incremental increases in either Zimm or Zmat of 0.1 were associated with 0.03-0.05 reductions in r. To effect similar reductions, individual growth rate would have to decline by approximately one half. At observed weights at age, increases in Zmat from 0.20 to 0.45 increased the probability of negative per-generation growth from 3 to 26% for cod maturing at 4 years and from 6 to 46% for cod maturing at 7 years. Thus, even in the absence of fishing mortality, little or no population growth by Atlantic cod may not be unexpected in the presence of environmental stochasticity, particularly when accompanied by increases in mortality and declining individual growth.


Sign in / Sign up

Export Citation Format

Share Document