Benthic Macroinvertebrates Modify Copper and Zinc Partitioning in Freshwater–Sediment Microcosms

1985 ◽  
Vol 42 (9) ◽  
pp. 1465-1473 ◽  
Author(s):  
G. Krantzberg ◽  
P. M. Stokes

The effects of bioturbation on metal dynamics in freshwater–sediment systems were examined. In general, benthic macroinvertebrates caused significant changes in Cu and Zn partitioning among physicochemical forms in the sediment. The proportion of cation-exchangeable and specifically adsorbed Cu observed in Chub Lake (Muskoka–Haliburton) microcosms colonized by chironomids and chaoborids was greater than that for uncolonized sediment. The same relationship held for Cu in Lohi Lake (Sudbury) microcosms supporting a similar benthic community and for Cu and Zn in Port Credit (Lake Ontario) sediments inhabited by tubificids. The ability of tubificid worms to increase sediment Eh was recorded and related to Cu and Zn dynamics. We conclude that macroinvertebrate communities have the potential to increase metal concentrations in the water column, particularly during short episodes of high burrowing activity, and that in situ studies are warranted to verify this potentiality.

2019 ◽  
Vol 9 (23) ◽  
pp. 5162 ◽  
Author(s):  
Dong-Kyun Kim ◽  
Hyunbin Jo ◽  
Kiyun Park ◽  
Ihn-Sil Kwak

The study aims to assess the spatial distribution of benthic macroinvertebrate communities in response to the surrounding environmental factors related to land use and water quality. A total of 124 sites were surveyed at the Seomjin River basin in May and September 2017, respectively. We evaluated the abundance and composition of benthic macroinvertebrate communities based on nine subwatersheds. Subsequently, we compared the benthic information with the corresponding land use and water quality. To comprehensively explore the spatiotemporal distinction of benthic macroinvertebrate communities associated with those ambient conditions, we applied canonical correspondence analysis (CCA). The CCA results explicitly accounted for 61% of the explanatory variability; the first axis (45.5%) was related to land-use factors, and the second axis (15.5%) was related to water quality. As a result, the groups of benthic communities were distinctly characterized in relation to these two factors. It was found that land-use information is primarily an efficient proxy of ambient water quality conditions to determine benthic macroinvertebrates, such as Asellus spp., Gammarus spp., and Simulium spp. in a stream ecosystem. We also found that specific benthic families or genera within the same groups (Coleoptera, Diptera, Ephemeroptera, and Trichoptera) are also differentiated from ambient water quality changes as a secondary component. In particular, the latter pattern appeared to be closely associated with the impact of summer rainfall on the benthic community changes. Our study sheds light upon projecting benthic community structure in response to changes of land use and water quality. Finally, we conclude that easily accessible information, such as land-use data, aids in effectively characterizing the distribution of benthic macroinvertebrates, and thus enables us to rapidly assess stream health and integrity.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


1981 ◽  
Vol 16 (1) ◽  
pp. 45-58 ◽  
Author(s):  
G. Krantzberg ◽  
P.M. Stokes

Abstract An investigation was made of the effects exerted by benthic macroinvertebrate communities on copper speciation in sediments from a lake which is becoming acidified. In laboratory microcosms, benthic macroinvertebrate communities stimulated the flux of copper from sediment to water. The presence of the macro-benthos resulted in a redistribution of physico-chemical copper species within the sediment with a transfer from more strongly complexed forms (HC1 extractable) to adsorbed and cation exchangeable forms (MgCl2 extractable). The role of bio-turbation in copper transformations is discussed.


1987 ◽  
Vol 44 (12) ◽  
pp. 2144-2154 ◽  
Author(s):  
M. Putt ◽  
G. P. Harris ◽  
R. L. Cuhel

Measurement of 1-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) enhanced fluorescence (FDCMU) suggested that photoinhibition of photosynthesis was frequently an artifact of in situ bottle incubations in Lake Ontario phytoplankton. In a seasonal study, FDCMU of all populations was depressed by bright light in an incubator. However, when the euphotic zone did not exceed the depth of the mixed layer, vertical transport of phytoplankton into either low-light or dark regions apparently allowed reversal of photoinhibition of FDCMU. Advantages of FDCMU as a bioassay of vertical mixing include rapidity of response time, ease of measurement in the field, and insensitivity of this parameter to changes in phosphorus status of the population. Because of seasonal changes in the photoadaptive response of natural populations, the rate constants and threshold light levels required to cause the response must be determined at each use if the method is to be quantitative.


2017 ◽  
Vol 75 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Louis Legendre ◽  
Richard B Rivkin ◽  
Nianzhi Jiao

Abstract This “Food for Thought” article examines the potential uses of several novel scientific and technological developments, which are currently available or being developed, to significantly advance or supplement existing experimental approaches to study water-column biogeochemical processes (WCB-processes). After examining the complementary roles of observation, experiments and numerical models to study WCB-processes, we focus on the main experimental approaches of free-water in situ experiments, and at-sea and on-land meso- and macrocosms. We identify some of the incompletely resolved aspects of marine WCB-processes, and explore advanced experimental approaches that could be used to reduce their uncertainties. We examine three such approaches: free-water experiments of lengthened duration using bioArgo floats and gliders, at-sea mesocosms deployed several 100s m below the sea-surface using new biogeochemical sensors, and 50 m-tall on-land macrocosms. These approaches could lead to significant progress in concepts related to marine WCB-processes.


2016 ◽  
Vol 28 (0) ◽  
Author(s):  
Lívia Borges dos Santos ◽  
Cyntia Goulart Côrrea Bruno ◽  
Jean Carlos Santos

Abstract: Aim To analyze the efficiency of organic and inorganic substrates in samples of benthic macroinvertebrates of riparian forests from the Cerrado. Specific objectives (i) characterize the ecological succession and taxonomic richness of benthic macroinvertebrates in stream affluent of a riparian forest; (ii) analyze the influence of seasonality on the colonization of macroinvertebrates; and (iii) determine the effect of the types of artificial substrates on the richness, composition and abundance of the benthic community. Methods Sampling was carried out in the rainy and dry seasons, and we installed in the watercourse two types of substrates: organic (leaf packs) and inorganic (bricks), organized in pairs. Six samples per season were done to verify colonization, succession, richness and abundance of benthic community. The substrates were carefully sorted and the organisms were identified to the lowest possible taxonomic level. Results The ecological succession was clearly observed, with the initial occurrence of Chironomidae and Baetidae (considered early colonizers), and a late occurrence of organisms such as Helotrephidae and Trichoptera (considered late colonizers). No significant difference was found in the richness and abundance among the studied seasons (rainy and dry), but the organic substrate was significantly higher than the inorganic substrate for these parameters. Conclusion Organic artificial substrates are more efficient in characterizing the community of benthic macroinvertebrates in the study area, because they are more similar to the conditions of the substrate found naturally in the environment.


2014 ◽  
Vol 281 (1775) ◽  
pp. 20132479 ◽  
Author(s):  
K. E. Fabricius ◽  
G. De'ath ◽  
S. Noonan ◽  
S. Uthicke

The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO 2 ) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO 2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO 2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO 2 (425–1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO 2 tolerances derived from laboratory experiments. High CO 2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1185-1206 ◽  
Author(s):  
Iván Pérez-Santos ◽  
Leonardo Castro ◽  
Lauren Ross ◽  
Edwin Niklitschek ◽  
Nicolás Mayorga ◽  
...  

Abstract. The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of macrozooplankton along the only northern Patagonian fjord known to date, where hypoxic conditions occur in the water column. Acoustic Doppler current profiler moorings, scientific echo-sounder transects and in situ plankton abundance measurements were used to study macrozooplankton assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified through vertical microstructure profiles collected throughout time in areas with high macrozooplankton concentrations. The acoustic records and in situ macrozooplankton data revealed diel vertical migrations (DVM) of siphonophores, chaetognaths and euphausiids. In particular, a dense biological backscattering layer was observed along Puyuhuapi Fjord between the surface and the top of the hypoxic boundary layer (∼100 m), which limited the vertical distribution of most macrozooplankton and their DVM, generating a significant reduction of habitat. Aggregations of macrozooplankton and fishes were most abundant around a submarine sill in Jacaf Channel. In this location macrozooplankton were distributed throughout the water column (0 to ∼200 m), with no evidence of a hypoxic boundary due to the intense mixing near the sill. In particular, turbulence measurements taken near the sill indicated high dissipation rates of turbulent kinetic energy (ε∼10-5 W kg−1) and vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the water column is well oxygenated (3–6 mL L−1, 60 %–80 % saturation), creating a suitable environment for macrozooplankton and fish aggregations. Turbulence induced by tidal flow over the sill apparently enhances the interchange of nutrients and oxygen concentrations with the surface layer, creating a productive environment for many marine species, where the prey–predator relationship might be favored.


Sign in / Sign up

Export Citation Format

Share Document