Time series bias in the estimation of density-dependent mortality in stock-recruitment models

1995 ◽  
Vol 52 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Ransom A. Myers ◽  
N. J. Barrowman

Large biases can occur in parameter estimates for stock–recruitment models because the stock sizes are not chosen independently, being correlated with variability in recruitment. We examine the importance of this "time series bias" by a comprehensive analysis of available stock–recruitment data and the use of simulations. For semelparous species, i.e., species that reproduce only once, time series bias is important for all populations for which we had data. For iteroparous species, i.e., species that reproduce more than once, large biases occur if the populations are exploited at close to the maximum that is biologically possible. Notably, when there is autocorrelation in natural mortality, for univoltine species, the direction of bias is reversed due to model misspecification. Given moderate sample sizes and moderate levels of exploitation, time series bias is small for species such as Atlantic cod (Gadus morhua), for which α, the slope of the relationship between recruitment and number of spawners as the number of spawners goes to zero, is large. Time series bias will usually be important in species such as hakes (Merluccius) for which α appears to be relatively small.

1985 ◽  
Vol 42 (1) ◽  
pp. 147-149 ◽  
Author(s):  
Carl J. Walters

Functional relationships, such as stock–recruitment curves, are generally estimated from time series data where natural "random" factors have generated both deviations from the relationship and also informative variation in the independent variables. Even in the absence of measurement errors, such natural experiments can lead to severely biased parameter estimates. For stock–recruitment models, the bias is misleading for management: the stock will appear too productive when it is low, and too unproductive when it is large. The likely magnitude of such biases can and should be determined for any particular case by Monte Carlo simulations.


2019 ◽  
Vol 77 (4) ◽  
pp. 1492-1502 ◽  
Author(s):  
Camilla Sguotti ◽  
Saskia A Otto ◽  
Xochitl Cormon ◽  
Karl M Werner ◽  
Ethan Deyle ◽  
...  

Abstract The stock–recruitment relationship is the basis of any stock prediction and thus fundamental for fishery management. Traditional parametric stock–recruitment models often poorly fit empirical data, nevertheless they are still the rule in fish stock assessment procedures. We here apply a multi-model approach to predict recruitment of 20 Atlantic cod (Gadus morhua) stocks as a function of adult biomass and environmental variables. We compare the traditional Ricker model with two non-parametric approaches: (i) the stochastic cusp model from catastrophe theory and (ii) multivariate simplex projections, based on attractor state-space reconstruction. We show that the performance of each model is contingent on the historical dynamics of individual stocks, and that stocks which experienced abrupt and state-dependent dynamics are best modelled using non-parametric approaches. These dynamics are pervasive in Western stocks highlighting a geographical distinction between cod stocks, which have implications for their recovery potential. Furthermore, the addition of environmental variables always improved the models’ predictive power indicating that they should be considered in stock assessment and management routines. Using our multi-model approach, we demonstrate that we should be more flexible when modelling recruitment and tailor our approaches to the dynamical properties of each individual stock.


1992 ◽  
Vol 49 (2) ◽  
pp. 202-209 ◽  
Author(s):  
G. A. Rose

The hypothesis that annual catches of fixed gear fisheries are cross-correlated with stock biomass at lags predictable on the basis of the relative ages of fish comprising the catch and biomass was verified for the trapnet fisheries of the northeastern Newfoundland "northern" (NAFO 2J3KL) and northern "Gulf" of St. Lawrence (NAFO 3Pn4RS) Atlantic cod (Gadus morhua) stocks. Time series indices of stock biomass were derived from these cross-correlations. For northern cod, the index was a 3-yr weighted and lagged moving average of catch. For the years 1972–81 (the first half of the available data) the trap index (Ti) was regressed on the stock biomass (Bi) determined by sequential population models (SPA) (Ti = 0.477Bi0.638, r = 0.99, P < 0.01). Biomass forecasts for 1982–90 derived from this function (inverted) were positively correlated with recent SPA-based estimates (r = 0.94, P < 0.02). For Gulf cod, the index was a 4-yr weighted and lagged moving average of catch. This index was regressed on SPA-determined biomass for the years 1974–81 (Ti = −3.19 + 0.0217Bi, r = 0.99; P < 0.01). Biomass forecasts for 1982–90 were positively correlated with (but lower than) SPA-based biomass estimates for the Gulf stock (r = 0.91, P < 0.05).


2001 ◽  
Vol 58 (7) ◽  
pp. 1464-1476 ◽  
Author(s):  
Ransom A Myers ◽  
Brian R MacKenzie ◽  
Keith G Bowen ◽  
Nicholas J Barrowman

Population and community data in one study are usually analyzed in isolation from other data. Here, we introduce statistical methods that allow many data sets to be analyzed simultaneously such that different studies may "borrow strength" from each other. In the simplest case, we simultaneously model 21 Atlanic cod (Gadus morhua) stocks in the North Atlantic assuming that the maximum reproductive rate and the carrying capacity per unit area are random variables. This method uses a nonlinear mixed model and is a natural approach to investigate how carrying capacity varies among populations. We used empirical Bayes techniques to estimate the maximum reproductive rate and carrying capacity of each stock. In all cases, the empirical Bayes estimates were biologically reasonable, whereas a stock by stock analysis occasionally yielded nonsensical parameter estimates (e.g., infinite values). Our analysis showed that the carrying capacity per unit area varied by more than 20-fold among populations and that much of this variation was related to temperature. That is, the carrying capacity per square kilometre declines as temperature increases.


2006 ◽  
Vol 63 (1) ◽  
pp. 200-211 ◽  
Author(s):  
Christian Jørgensen ◽  
Bruno Ernande ◽  
Øyvind Fiksen ◽  
Ulf Dieckmann

That sexually mature fish skip reproduction, especially in response to poor condition, has been documented in many species. We present results from an energy-allocation life history model that shed light on the underlying logic of skipped spawning, based on the Northeast Arctic stock of Atlantic cod (Gadus morhua). The model predicts that skipped spawning is a regular phenomenon, with up to 30% of the sexually mature biomass skipping spawning. Spawning should be skipped if the expected future gain in reproductive output, discounted by survival, more than balances the expected reproductive success the current year. Skipped spawning was most common (i) among potential second-time spawners and (ii) early in life, (iii) when fishing mortality at the spawning grounds was high, (iv) when fishing mortality at the feeding grounds was low, (v) when natural mortality was low, and (vi) when the energetic and mortality costs associated with migration and spawning were high. Cod skipped spawning more often when food availability was both increased (opportunities for better growth) and decreased (too little energy for gonad development), and this pattern interacted with mortality rate. We conclude that skipped spawning may be more widespread than appreciated and highlight potential consequences for the understanding of stock–recruitment relationships.


1999 ◽  
Vol 56 (11) ◽  
pp. 2069-2077 ◽  
Author(s):  
B Planque ◽  
T Frédou

Variability in the recruitment of fish has been attributed to either changes in the environment or variations in the size of reproductive stocks. Disentangling the effects of environment and stock has proven to be problematic and has resulted in recurrent controversy between studies supporting either hypothesis. In the present study, we examine the relationship between interannual changes in temperature and variation in recruitment for nine Atlantic cod (Gadus morhua) stocks in the North Atlantic. We show that for individual stocks, the relationship often appears weak and statistically not significant. On the other hand, by combining in a single metaanalysis the results from individual stocks, we demonstrate that recruitment of Atlantic cod is linked to interannual fluctuations in temperature in such a way that for stocks located in warm water the relationship is negative, for stocks located in cold water the relationship is positive, and there is no relationship for stocks located in the middle of the temperature range.


1989 ◽  
Vol 46 (11) ◽  
pp. 1884-1894 ◽  
Author(s):  
Richard L. Radtke

External and internal examination of Atlantic cod (Gadus morhua) otoliths for macrostructure and microstructure, by light and scanning electron microscopy, indicated daily rhythmic patterns. The first daily increment developed the day after hatching. Sagittae changed shape from spherical to oblong at 20 d and to crenulated at 50−60 d old. Cod were reared at three temperatures (6,8 and 10 °C), to provide a range of growth and developmental rates. Distinctive marks formed at yolk-sac absorption, initiation of feeding and settlement. It was possible to determine age and growth rate from otolith analyses. The relationship between otolith length and fish size was independent of growth rate; it followed a quadratic function for the smaller individuals (< 6.5 mm), and it was linear in individuals greater than 25 mm. Larval fish shrank considerably at death. The magnitude of shrinkage was dependent on larval length, and the elapsed time between death and fixation. Immediate fixation in ethanol resulted in minimal shrinkage. The relationship between fish length and otolith diameter may be used to correct for shrinkage associated with collection and death.


1995 ◽  
Vol 52 (11) ◽  
pp. 2377-2387 ◽  
Author(s):  
E. M. DeBlois ◽  
G. A. Rose

Acoustic methods used to quantify the shoaling dynamics of Atlantic cod (Gadus morhua) during their shoreward migration across the northeast Newfoundland shelf (spring 1992) showed that shoal structure and horizontal displacement were associated with the density distribution of small pelagic scatterers, for example, shrimp (Pandalus borealis). Cod speeds (to 20 km/d) were lower after encounters with shrimp (4–7 km/d). The relationship between several characteristics of the cod shoal (density, vertical spread, height off the bottom) and shrimp density was dome shaped. Internal shoal densities declined and shoal spread and height increased until shrimp densities surpassed a critical level. Above this threshold, these trends were reversed. The vertical spread of the cod shoal matched that of shrimp up to, but not beyond, a shrimp spread of 85 m. At this observed maximum in the expansion of the shoal, fish were eight body lengths apart. At all times during our survey, cod stayed within the warmer waters (> 2 °C) found at depths greater than 250 m. Our results are the first field verification of theoretical predictions and laboratory findings that shoals expand and contract in response to foraging activity and demonstrate the potential importance of cod aggregation dynamics to interpretations of trawl data.


1998 ◽  
Vol 201 (19) ◽  
pp. 2779-2789 ◽  
Author(s):  
DM Webber ◽  
RG Boutilier ◽  
SR Kerr

Adult Atlantic cod (2 kg Gadus morhua) were fitted with Doppler ultrasonic flow-probes to measure ventral aortic outflow (i.e. cardiac output). The probes remained patent for upwards of 3 months, during which time detailed relationships between cardiac output (), heart rate (fh) and rate of oxygen consumption (O2) were determined as a function of swimming speed and temperature (5 degreesC and 10 degreesC). The rate of oxygen consumption increased linearly with and exponentially with swimming speed. A very good correlation was observed between O2 and (r2=0.86) compared with the correlation between O2 and fh (r2=0.50 for all 10 degreesC data and r2=0.86 for all 5 degreesC data). However, the O2 versus fh correlation gradually improved over approximately 1 week after surgery (r2=0.86). The relationship between O2 and was independent of temperature, while the relationship between O2 and fh changed with temperature. Hence, calculating O2 from is simpler and does not require that temperature be recorded simultaneously. Variations in cardiac output were determined more by changes in stroke volume (Vs) than by fh; therefore, fh was a less reliable predictor of metabolic rate than was . Given that can be used to estimate O2 so faithfully, the advent of a cardiac output telemeter would enable robust estimates to be made of the activity metabolism of free-ranging fish in nature, thereby strengthening one of the weakest links in the bioenergetic models of fisheries biology.


Parasitology ◽  
1997 ◽  
Vol 114 (2) ◽  
pp. 145-150 ◽  
Author(s):  
D. A. LYSNE ◽  
W. HEMMINGSEN ◽  
A. SKORPING

To study the infection dynamics of metacercariae of the digenean Cryptocotyle lingua, wild living Atlantic cod, Gadus morhua, were caged for 18 months close to the shore. Here they were exposed to naturally occurring transmission stages of the parasite. First, both the abundance and the variance to mean ratio of metacercariae increased, but during the second half of the study the abundance levelled out, and the variance to mean ratio showed a significant decrease. Host mortality was negligible throughout the study. Based on the relationship between pigment spots and metacercariae observed by skin digestion, there was no indication of density-dependent parasite mortality. We conclude that the infrapopulations of metacercariae on the caged cod probably were regulated by density-dependent host responses acting against the cercariae.


Sign in / Sign up

Export Citation Format

Share Document