Postsettlement eutrophication histories of six British Columbia (Canada) lakes

1995 ◽  
Vol 52 (11) ◽  
pp. 2388-2401 ◽  
Author(s):  
Euan D. Reavie ◽  
John P. Smol ◽  
N. Bruce Carmichael

Eutrophication is a serious problem in many British Columbia lakes. However, long-term nutrient data are rare or unavailable for most lake systems, so the natural, predisturbance characteristics of lakes are unknown, as are the trajectories of past environmental change. We used paleolimnological analyses of diatoms to quantitatively assess eutrophication trends for approximately the last 150 years in six British Columbia lakes. A transfer function was used to infer past lake-water total phosphorus concentrations from the sedimentary diatom assemblages in 210Pb-dated sediment cores: all of the lakes had relatively high total phosphorus levels (> 13 μg/L) prior to European settlement. Three of the lakes showed significant eutrophication since that time, whereas the others were only mildly affected. Total phosphorus inferences using the transfer function satisfactorily estimated the modern total phosphorus concentrations of our six study lakes. Minor quantitative problems arose when some fossil assemblages provided poor analogues to the calibration function, but eutrophication trends were still clearly apparent. Our results confirm that some British Columbia lakes have suffered considerable eutrophication as a result of anthropogenically related nutrient inputs, while others, although situated within human-influenced regions, have been relatively unaffected. These results can now be used to help set realistic goals for restoration projects.

2012 ◽  
Vol 69 (1) ◽  
pp. 24-40 ◽  
Author(s):  
Jessica Hawryshyn ◽  
Kathleen M. Rühland ◽  
Roberto Quinlan ◽  
John P. Smol

Diatom-based paleolimnological techniques were used to assess long-term changes in the water quality of Lake Simcoe (Ontario, Canada) using 210Pb-dated sediment cores from four sites across the lake. Modest lake-wide shifts in diatom community composition occurred in the late 19th and early 20th centuries, suggesting that early cultural disturbances (e.g., land clearance and canal construction) had relatively minor effects on Lake Simcoe water quality. However, starting in the 1930s, phosphorus loading to the lake increased, which was closely tracked by increases in diatom taxa indicative of eutrophic conditions. The most pronounced lake-wide shift in diatom assemblages occurred in the mid- to late 20th century, the nature and timing of which strongly suggested a response to regional climate warming. An additional and marked lake-wide shift in diatom assemblages occurred in the mid-1990s, coinciding with the invasion of dreissenid mussels in Lake Simcoe. Our results indicate that Lake Simcoe water quality has been affected by the interaction of numerous environmental stressors over the past two centuries, the complexity of which has been amplified by recent warming.


2008 ◽  
Vol 43 (2-3) ◽  
pp. 85-98 ◽  
Author(s):  
Joshua R. Thienpont ◽  
Brian K. Ginn ◽  
Brian F. Cumming ◽  
John P. Smol

Abstract Paleolimnological approaches using sedimentary diatom assemblages were used to assess water quality changes over the last approximately 200 years in three lakes from King's County, Nova Scotia. In particular, the role of recent shoreline development in accelerating eutrophication in these systems was assessed. Sediment cores collected from each lake were analyzed for their diatom assemblages at approximately 5-year intervals, as determined by 210Pb dating. Analyses showed that each system has changed, but tracked different ecosystem changes. Tupper and George lakes recorded shifts, which are likely primarily related to climatic warming, with diatom assemblages changing from a preindustrial dominance by Aulacoseira spp. to present-day dominance by Cyclotella stelligera. In addition to the recent climatic-related changes, further diatom changes in the Tupper Lake core between approximately 1820 and 1970 were coincident with watershed disturbances (farming, forestry, and construction of hydroelectric power infrastructure). Black River Lake has recorded an increase in diatom-inferred total phosphorus since about 1950, likely due to impoundment of the Black River system for hydroelectric generation and subsequent changes in land runoff. Before-and-after (i.e., top-bottom) sediment analyses of six other lakes from King's County provided further evidence that the region is being influenced by climatic change (decreases in Aulacoseira spp., increases in planktonic diatom taxa), as well as showing other environmental stressors (e.g., acidification). However, we recorded no marked increase in diatom-inferred nutrient levels coincident with shoreline cottage development in any of the nine study lakes. Paleolimnological studies such as these allow lake managers to place the current limnological conditions into a long-term context, and thereby provide important background data for effective lake management.


1995 ◽  
Vol 30 (4) ◽  
pp. 565-592 ◽  
Author(s):  
A.F. Gemza

Abstract Severn Sound continues to exhibit signs of eutrophication despite initial identification of the problem in 1969 and the construction of several sewage treatment plants since then. In general, improvements in trophic state indicators have been marginal, suggesting that the sewage treatment plants have had limited success in controlling phosphorus concentrations. These discharges likely contributed to the increased total phosphorus levels and consequently the higher phytoplankton densities of the nearshore waters. Phytoplankton biovolumes were on average one order of magnitude higher than in the open waters of Lake Huron with mean summer biovolumes as high as 8.0 mm/L. Algal biovolumes were most dense in Penetang Bay, which experienced limited exchange with the main waters of the sound. No significant long-term trends were observed. Water clarity was declining significantly, however, at a rate of -0.60 to -0.78 m/year throughout the sound except in Sturgeon Bay. Total phosphorus levels were highly variable from year to year; however, concentrations from a 20-year perspective were declining in the open waters at a rate of 0.70 µg/L/year, but response was limited in nearshore areas. In Sturgeon Bay, mean annual euphotic zone total phosphorus as well as soluble reactive phosphorus levels declined by as much as 50% following the construction of a sewage treatment plant with tertiary treatment. Phytoplankton genera typical of eutrophic waters continued to dominate the algal assemblage but members indicative of mesotrophic conditions have become apparent in some areas of the sound.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1145
Author(s):  
Zhongyuan Chen ◽  
Hao Xu ◽  
Yanna Wang

This study reviews the monsoonal Yangtze and the arid Nile deltas with the objective of understanding how the process–response between river-basin modifications and delta-estuary ecological degradation are interrelated under contrasting hydroclimate dynamics. Our analysis shows that the Yangtze River had a long-term stepwise reduction in sediment and silicate fluxes to estuary due to dam construction since the 1960s, especially after the Three Gorges Dam (TGD) closed in 2003. By contrast, the Nile had a drastic reduction of sediment, freshwater, and silicate fluxes immediately after the construction of the Aswan High Dam (AHD) in 1964. Seasonal rainfall in the mid-lower Yangtze basin (below TGD) complemented riverine materials to its estuary, but little was available to the Nile coast below the AHD in the hyper-arid climate setting. Nitrogen (N) and phosphate (P) fluxes in both river basins have increased because of the overuse of N- and P-fertilizer, land-use changes, urbanization, and industrialization. Nutrient ratios (N:P:Si) in both delta-estuaries was greatly altered, i.e., Yangtze case: 75:1:946 (1960s–1970s), 86:1:272 (1980s–1990s) and 102:1:75 (2000s–2010s); and Nile case: 6:1:32 (1960s–1970s), 8:1:9 (1980s–1990s), and 45:1:22 (2013), in the context of the optimum of Redfield ratio (N:P:Si = 16:1:16). This led to an ecological regime shift evidenced by a long-term change in phytoplankton communities in the Yangtze estuary, where silicious algae tended to lose dominance since the end of the 1990s, when more toxic dinoflagellates began to emerge. In the Nile estuary, such a regime shift was indicated by the post-dam dramatic reduction in zooplankton standing crop and fish landings until the early 2000s when biological recovery occurred due to nutrient inputs from anthropogenic sources. Although the Yangtze had higher human impacts than the Nile in terms of population, industrialization, and fertilizer application, N concentrations in the Nile estuarine waters surpassed the Yangtze in recent decades. However, eutrophication in the Yangtze estuary is much more intensive than in the Nile, leading to the likelihood of its estuarine water becoming more acidic than ever before. Therefore, ecological degradation in both delta-estuaries does not follow a linear trajectory, due not only to different climate dynamics but also to human forcings. The comparative insights of this study should be incorporated into future integrated coastal management of these two important systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia Ribeiro ◽  
Audrey Limoges ◽  
Guillaume Massé ◽  
Kasper L. Johansen ◽  
William Colgan ◽  
...  

AbstractHigh Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.


Sign in / Sign up

Export Citation Format

Share Document