scholarly journals Food-web regulation by a planktivore: exploring the generality of the trophic cascade hypothesis

1995 ◽  
Vol 52 (11) ◽  
pp. 2518-2526 ◽  
Author(s):  
Roy A. Stein ◽  
Dennis R. DeVries ◽  
John M. Dettmers

The trophic cascade hypothesis currently being tested in north temperate systems may not apply to open-water communities in lower latitude U.S. reservoirs. These reservoir communities differ dramatically from northern lakes in that an open-water omnivore, gizzard shad (Dorosoma cepedianum), often occurs in abundance. Neither controlled by fish predators (owing to high fecundity and low vulnerability) nor by their zooplankton prey (following the midsummer zooplankton decline, gizzard shad consume detritus and phytoplankton), gizzard shad regulate community composition rather than being regulated by top-down or bottom-up forces. In experiments across a range of spatial scales (enclosures, 1–9 m2; ponds, 4–5 ha; and reservoirs, 50–100 ha), we evaluated the generality of the trophic cascade hypothesis by assessing its conceptual strength in reservoir food webs. We reviewed the role of gizzard shad in controlling zooplankton populations and hence recruitment of bluegill, Lepomis macrochirus (via exploitative competition for zooplankton), and largemouth bass, Micropterus salmoides (by reducing their bluegill prey). Reservoir fish communities, owing to the presence of gizzard shad, appear to be regulated more by complex weblike interactions among species than by the more chainlike interactions characteristic of the trophic cascade.

1992 ◽  
Vol 49 (6) ◽  
pp. 1216-1227 ◽  
Author(s):  
Dennis R. DeVries ◽  
Roy A. Stein

An open-water planktivore, the gizzard shad (Dorosoma cepedianum), can drive complex interactions among fish and zooplankton in Ohio reservoirs. In Kokosing Lake, crustacean zooplankton density declined to near zero immediately after larval gizzard shad abundance peaked during 1987 and 1988. This decline can be attributed to increased death rates, due to predation, and to reduced number of eggs per cladoceran. In an enclosure/exclosure experiment, young-of-year gizzard shad at lake densities significantly reduced density of crustacean zooplankton and rotifers within 2 wk. In addition, phytoplankton that were edible to zooplankton were reduced in enclosures, likely due to a combination of direct herbivory by gizzard shad and reduced nutrient availability due to uptake by the growing gizzard shad. Gizzard shad not only directly influenced zooplankton via predation, they also indirectly affected zooplankton by reducing phytoplankton abundance. Because larval bluegill (Lepomis macrochira) migrated to the limnetic zone during or shortly after the zooplankton decline, food available to these zooplanktivorous larvae, as well as their ultimate recruitment, was reduced with gizzard shad. Through direct (i.e. predation) and indirect (i.e. influencing algal abundance) pathways, gizzard shad can drive zooplankton to extinction, thereby reducing recruitment of other fishes and controlling community composition.


2020 ◽  
Vol 12 (4) ◽  
pp. 1447 ◽  
Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim

Aquatic macrophytes determine the physical complexity of aquatic environments and may influence the distribution and feeding habits of fish species. We explored the influence of different microhabitats, including vegetated beds (VB), edges of vegetated beds (EVB), and open water zones (OW), on two exotic fish species (Lepomis macrochirus and Micropterus salmoides) in shallow reservoirs. Lepomis macrochirus was more abundant in VB than in other zones and M. salmoides was mainly distributed in EVB. In VB, L. macrochirus mainly consumed branchiopods and isopods, while M. salmoides in EVB relied on relatively larger food items, such as dipterans, odonatans, and young fish. The consumption of young fish by M. salmoides, including L. macrochirus, showed little difference between winter and summer. Based on these findings, we suggest that young L. macrochirus (~20 cm) utilize VB as a refuge to avoid predation by M. salmoides. Meanwhile, M. salmoides mainly occupied in areas surrounding VB, preying on animals at these edges. As such, the presence of aquatic macrophytes appears to plays a key role in the survival and population growth of L. macrochirus. Proper management of aquatic macrophytes can help reduce populations of exotic fish and support native fish species.


2020 ◽  
Vol 11 (1) ◽  
pp. 121-129
Author(s):  
Ben C. Neely ◽  
Jeff D. Koch ◽  
Keith B. Gido ◽  
Connor J. Chance-Ossowski ◽  
Elizabeth A. Renner

Abstract We evaluated growth of Bluegill Lepomis macrochirus in 24 small Kansas impoundments to understand variability in populations statewide. We assigned ages to 1,323 Bluegill, and when combined, growth parameters using the Ogle–Isermann parameterization of the von Bertalanffy growth model were: L∞ = 228 mm, K = 0.25, and t152 = 3.10 y. Growth was variable among the 24 populations and t152 (time to reach 152 mm total length) ranged from 1.56 to 4.87 y. We selected four representative limnological variables (latitude, maximum depth, total nitrogen, and total phosphorus) and four representative catch variables (catch-per-effort [CPE] of Bluegill, proportional size distribution of 178-mm Bluegill, CPE of stock-length Largemouth Bass Micropterus salmoides, and CPE of Gizzard Shad Dorosoma cepedianum) to elucidate mechanisms that explained t152 in Bluegill populations. We fit all subset candidate models using the eight variables to predict t152. Top candidate models (corrected Akaike's information criterion scores within two units of the most parsimonious model) comprised a confidence model set, and we used model-weighted averaging to calculate parameter estimates with 95% confidence intervals for each independent variable present in the confidence model set to develop a single explanatory model. The final model suggested that Bluegill size structure, latitude, and CPE of stock-length Largemouth Bass affected Bluegill growth, whereas a smaller effect was attributed to CPE of Gizzard Shad. Combined, these variables explained 40% of variation in observed Bluegill growth rate. Results from this study summarize Bluegill growth in Kansas and highlight variation in growth rates across small impoundments. Further, they suggest that Bluegill size structure, latitude, and relative abundance of stock-length Largemouth Bass are important factors regulating Bluegill growth in small Kansas impoundments.


1992 ◽  
Vol 49 (7) ◽  
pp. 1466-1473 ◽  
Author(s):  
Xavier Lazzaro ◽  
Ray W. Drenner ◽  
Roy A. Stein ◽  
J. Durward Smith

We quantified the effects of planktivore biomass and planktivore type in an experimental mesocosm study of factorial design in which five levels of fish biomass (0–75 g/m3) were cross-classified with two plantivore types: filter-feeding gizzard shad (Dorosoma cepedianum) and visual-feeding bluegill (Lepomis macrochims). As fish biomass increased, cladocerans, cyclopoids, particulate phosphorus (PP) > 200 μm, and chironomids declined; conversely, rotifers, primary productivity, chlorophyll a, turbidity, unicellular flagellates, colonial and unicellular green algae, pennate diatoms, total phosphorus, and 20–200 and 12–20 μm PP were enhanced. In the presence of gizzard shad, as compared with bluegill, cyclopoids, turbidity, unicellular green algae, pennate diatoms, > 200 μm PP, and chironomid tubes were higher whereas colonial green algae and < 0.2 μm PP were lower. Fish biomass operated independently of planktivore type for most variables, except copepods, colonial green algae, turbidity, and 20–200 μm PP. Although gizzard shad and bluegill have different trophic cascade pathways, fish biomass was more important than planktivore type as a regulator of plankton communities and water quality.


2021 ◽  
Vol 9 (2) ◽  
pp. 190
Author(s):  
Jeffrey Short ◽  
Christine Voss ◽  
Maria Vozzo ◽  
Vincent Guillory ◽  
Harold Geiger ◽  
...  

Unprecedented recruitment of Gulf menhaden (Brevoortia patronus) followed the 2010 Deepwater Horizon blowout (DWH). The foregone consumption of Gulf menhaden, after their many predator species were killed by oiling, increased competition among menhaden for food, resulting in poor physiological conditions and low lipid content during 2011 and 2012. Menhaden sampled for length and weight measurements, beginning in 2011, exhibited the poorest condition around Barataria Bay, west of the Mississippi River, where recruitment of the 2010 year class was highest. Trophodynamic comparisons indicate that ~20% of net primary production flowed through Gulf menhaden prior to the DWH, increasing to ~38% in 2011 and ~27% in 2012, confirming the dominant role of Gulf menhaden in their food web. Hyperabundant Gulf menhaden likely suppressed populations of their zooplankton prey, suggesting a trophic cascade triggered by increased menhaden recruitment. Additionally, low-lipid menhaden likely became “junk food” for predators, further propagating adverse effects. We posit that food web analyses based on inappropriate spatial scales for dominant species, or solely on biomass, provide insufficient indication of the ecosystem consequences of oiling injury. Including such cascading and associated indirect effects in damage assessment models will enhance the ability to anticipate and estimate ecosystem damage from, and provide recovery guidance for, major oil spills.


2021 ◽  
Vol 13 (5) ◽  
pp. 2486
Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim

Empirical studies suggest that changes in the density of top predators, such as carnivorous fish, in freshwater food webs, strongly affect not only fish communities but also various primary and secondary consumers. Based on these findings, we explored how differences in the utilization of carnivorous fish (i.e., Northern Snakehead, Channa argus) by humans affected the fish and cladoceran community structure as well as the settlement of exotic fish species (i.e., Lepomis macrochirus and Micropterus salmoides) in 30 wetlands located in the upper and lower reaches of the Nakdong River. Our results show that in the mid–lower reaches of the Nakdong River, the density of C. argus was low, while high densities of L. macrochirus and M. salmoides were observed. Exotic fish species are frequently consumed by C. argus, leading to a low density of L. macrochirus and M. salmoides in the upper reaches, which supported a high density of C. argus. However, in the mid–lower reaches, the density of L. macrochirus was high because of the frequent collection of C. argus by fishing activities. The dominance of L. macrochirus significantly changed the structure of cladoceran communities. L. macrochirus mainly feeds on pelagic species, increasing the density of epiphytic species in the mid–lower reaches. The continued utilization of C. argus by humans induced a stable settlement of exotic fish species and strongly affected the community structures of primary consumers in the 30 wetlands. The frequency of C. argus collection has to be reduced to secure biodiversity in the mid–lower reaches of the Nakdong River, which will reduce the proportion of exotic fish species and increase the conservation of native fish.


1995 ◽  
Vol 73 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
Charles H. Jagoe ◽  
Dave A. Welter

Chromosome number and genomic DNA content vary widely among fish species, and ploidy can vary within species. This suggests that the size, shape, and morphological features of cell nuclei may also vary. Nucleated erythrocytes of fish are an easily sampled homogeneous population of differentiated cells ideal for inter- and intra-species comparisons. We collected blood samples from largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus), chain pickerel (Esox niger), yellow perch (Perca flavescens), mosquitofish (Gambusia holbrooki), redeye bass (Micropterus coosae), and rainbow trout (Oncorhynchus mykiss) and removed cytoplasm and nuclear membranes from blood cells. Individual nuclei were examined and measured using scanning electron microscopy and a computerized image analysis system, and inter- and intra-species differences evaluated by nested analysis of variance. Nuclear size and shape varied significantly among species. Isolated nuclei had conspicuous apertures or holes, and the number and size of these holes also varied significantly among species. Variations in nuclear size and structure within species were small compared with interspecies differences. Little is known of the ultrastructure of erythrocyte nuclei in lower vertebrates, but their structure differs considerably from that of other vertebrate non-erythroid cells, suggesting that the organization of their DNA and associated proteins may be different.


2011 ◽  
Vol 27 (4) ◽  
pp. 287-297 ◽  
Author(s):  
Walt Godwin ◽  
Michael Coveney ◽  
Edgar Lowe ◽  
Lawrence Battoe

The tapeta lucida of three species of teleosts were examined to determine the composition of the reflecting material. The fishes were bay anchovy Anchoa mitchilli (Engraulidae), gizzard shad Dorosoma cepedianum (Clupeidae) and pigfish Orthopristes chrysopterus (Haemulidae). The tapetum of each species was situated in the pigment epithelium of the eye. That of the pigfish contained triglycerides identified as chiefly glyceryl tridocosahexaenoate. A reduced pteridine, 7, 8-dihydroxanthopterin, occurred in the tapetum of the gizzard shad. Guanine occurred in the tapetum of the bay anchovy. The tapetum of the shad contained brightly reflecting particles about 0.5 μm in diameter There were 10.8 mg of dihydroxanthopterin in the tapetum of a shad (total body length 23 cm) and 0.46 mg of guanine in the tapetum of an anchovy (total body length 9 cm). This is the first report of a pteridine acting as a retinal reflector in vertebrates. Various aspects of retinal reflectors of teleosts are discussed and their variety and common characteristics commented upon.


Koedoe ◽  
2001 ◽  
Vol 44 (2) ◽  
Author(s):  
I.A. Russell

Fish assemblages were sampled at six sites in the Breede River in the Bontebok National Park during 1999 and 2000. A total of 380 fish from 12 species was recorded. Indigenous fish collected included one freshwater species (Barbus andrewi), two catodromous species (Anguilla mossambica, Myxus capensis). and three estuarine species (Gilchris- tella aestuaria, Monodactylusfalciformis, Mugil cephalus). Four of the species recorded were aliens (Tinea tinea, Lepomis macrochirus, Micropterus salmoides, Micropterus dolomieu) and two species translocated from other South African rivers (Tilapia sparrmanii, Clarias gariepinus). A further two indigenous species (Sandelia capensis, Pseudobarbus biirchelli) could potentially occur within the park, though the high abundance of alien predators means that there is little chance for recolonisation from tributaries higher in the Breede River system. There is little opportunity to meaningfully conserve most indigenous freshwater fish in Bontebok National Park.


Sign in / Sign up

Export Citation Format

Share Document