The relationship between loci for mating system and fitness-related traits in Mimulus (Scrophulariaceae): A test for deleterious pleiotropy of QTLs with large effects

Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 628-633 ◽  
Author(s):  
Jing-Zhong Lin

Loci with large phenotypic effects are generally not thought to be important in the evolution of quantitative traits because of their deleterious pleiotropic effects, yet empirical studies of such pleiotropic effects are lacking. Here I use molecular markers to test the extent of deleterious pleiotropy of quantitative trait loci (QTLs) that have large effects on mating system differences between the wild plants Mimulus guttatus and M. platycalyx (Scrophulariaceae). Six fitness-related traits, namely germination rate (GR), number of nodes (NN), number of flowers (NF), plant height (HT), above-ground biomass (WT), and flowering time (FT) were examined in a growth chamber for a backcross population between M. guttatus and M. platycalyx (with M. platycalyx as recurrent parent). Interval mapping based upon a linkage map consisting of isozyme and random amplified polymorphic DNA (RAPD) markers detected no QTL for fitness-related traits near the mating system QTLs. Single-marker analysis based upon 13 markers flanking the mating system QTLs detected three significant marker-fitness trait associations, and these associations indicate beneficial effects of mating system loci. This suggests that QTLs with large effects on mating system traits do not have significant deleterious pleiotropic effects, and that they could be important factors in adaptive evolution of Mimulus.Key words: pleiotropy, mating system, fitness, quantitative trait loci, molecular marker.

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 620
Author(s):  
Noppawan Nounjan ◽  
Wuttipong Mahakham ◽  
Jonaliza L. Siangliw ◽  
Theerayut Toojinda ◽  
Piyada Theerakulpisut

Jasmine rice (Oryza sativa L.), or Khao Dawk Mali 105 (KDML105), is sensitive to drought and salt stresses. In this study, two improved drought-tolerant chromosome segment substitution lines (CSSLs) of KDML105 (CSSL8-103 and CSSL8-106), which carry drought tolerance quantitative trait loci (QTLs) on chromosome 8, were evaluated for salt tolerance and were compared with KDML105 and the QTL donor DH103, their parents and the salt-tolerant genotype Pokkali. After being subjected to salt stress for 6 days, 3-week-old seedlings of Pokkali showed the highest salt tolerance. Parameters related to photosynthesis were less inhibited in both CSSLs and the donor DH103, while these parameters were more severely damaged in the recurrent parent KDML105. Albeit a high ratio of Na+/K+, CSSLs and DH103 showed similar or higher contents of soluble sugar and activity of superoxide dismutase (SOD; EC1.15.1.1) compared with Pokkali, indicating possible mechanisms of either tissue or osmotic tolerance in these plants. The expression of a putative gene Os08g41990 (aminotransferase), which is located in DT-QTL and is involved in chlorophyll biosynthesis, significantly decreased under salt stress in KDML105 and CSSL8-103, while no obvious change in the expression of this gene was observed in Pokkali, DH103 and CSSL8-106. This gene might play a role in maintaining chlorophyll content under stress conditions. Taken together, the results of this study indicate that DT-QTL could contribute to the enhancement of photosynthetic performance in CSSL lines, leading to changes in their physiological ability to tolerate salinity stress.


Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 928-947 ◽  
Author(s):  
Eiji Hayashi ◽  
Natsuyo Aoyama ◽  
David W. Still

Temperature and light are primary environmental cues affecting seed germination. To elucidate the genetic architecture underlying lettuce ( Lactuca sativa L.) seed germination under different environmental conditions, an F8 recombinant inbred line population consisting of 131 families was phenotyped for final germination and germination rate. Seeds were imbibed in water at 20 °C under continuous red light (20-Rc), 20 °C continuous dark (20-Dc), 31.5 °C continuous red light (31.5-Rc), 31.5 °C continuous dark (31.5-Dc), or 20 °C far-red light for 24 h followed by continuous dark (20-FRc-Dc). Thirty-eight quantitative trait loci (QTL) were identified from two seed maturation environments: 10 for final germination and 28 for germination rate. The amount of variation attributed to an individual QTL ranged from 9.3% to 17.2% and from 5.6% to 26.2% for final germination and germination rate, respectively. Path analysis indicated that factors affecting germination under 31.5-Rc or 31.5-Dc are largely the same, and these appear to differ from those employed under 20-FRc-Dc. QTL and path analysis support the notion of common and unique factors for germination under diverse temperature and light regimes. A highly significant effect of the seed maturation environment on subsequent germination capacity under environmental stress was observed.


Parasitology ◽  
2010 ◽  
Vol 137 (8) ◽  
pp. 1275-1282 ◽  
Author(s):  
S. DOMINIK ◽  
P. W. HUNT ◽  
J. McNALLY ◽  
A. MURRELL ◽  
A. HALL ◽  
...  

SUMMARYThis study aimed to identify putative quantitative trait loci (QTL) that significantly affect internal parasite resistance in a backcross sheep population. A Romney×Merino backcross (to Merino) flock was challenged in 3 separate infections withTrichostrongylus colubriformis(primary and secondary) andHaemonchus contortus(tertiary). Haematological parameters were measured and faecal worm egg counts (FWEC) were established to estimate parasite burden. QTL mapping was conducted for FWEC and for the changes in haematocrit followingH. contortuschallenge and in eosinophil numbers followingT. colubriformischallenge. Animals were genotyped for 55 microsatellite markers on selected chromosomes 2, 3, 6, 11, 13, 15, 21, and 22. Four putative quantitative trait loci were found; these being for eosinophil change in the primary infection (OAR 21), for FWEC in the first infection and eosinophil change in the secondary infection (OAR 3) and for FWEC in the secondary infection (OAR 22). No significant quantitative trait loci were detected for FWEC or haematocrit change during theHaemonchus contortusinfection. The position of the putative quantitative trait loci for eosinophil change on OAR 3 is consistent with other reports of parasite resistance quantitative trait loci, implying some commonality between studies.


Sign in / Sign up

Export Citation Format

Share Document