SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napusThis article is one of a selection of papers from the conference “Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farming”.

Genome ◽  
2010 ◽  
Vol 53 (11) ◽  
pp. 948-956 ◽  
Author(s):  
G. Durstewitz ◽  
A. Polley ◽  
J. Plieske ◽  
H. Luerssen ◽  
E. M. Graner ◽  
...  

Oilseed rape ( Brassica napus ) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.

2021 ◽  
Author(s):  
Yun-Joo Kang ◽  
Bo-Mi Lee ◽  
Jangmi Kim ◽  
Moon Nam ◽  
Myoung-Hee Lee ◽  
...  

Abstract High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2,326 and 2,454 SNP markers that spanned a total genetic distance of 2,133 cM across 16 linkage groups and 2,169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1,123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.


Genome ◽  
2015 ◽  
Vol 58 (12) ◽  
pp. 549-557 ◽  
Author(s):  
Everestus C. Akanno ◽  
Graham Plastow ◽  
Carolyn Fitzsimmons ◽  
Stephen P. Miller ◽  
Vern Baron ◽  
...  

The aim of this study was to identify SNP markers that associate with variation in beef heifer reproduction and performance of their calves. A genome-wide association study was performed by means of the generalized quasi-likelihood score (GQLS) method using heifer genotypes from the BovineSNP50 BeadChip and estimated breeding values for pre-breeding body weight (PBW), pregnancy rate (PR), calving difficulty (CD), age at first calving (AFC), calf birth weight (BWT), calf weaning weight (WWT), and calf pre-weaning average daily gain (ADG). Data consisted of 785 replacement heifers from three Canadian research herds, namely Brandon Research Centre, Brandon, Manitoba, University of Alberta Roy Berg Kinsella Ranch, Kinsella, Alberta, and Lacombe Research Centre, Lacombe, Alberta. After applying a false discovery rate correction at a 5% significance level, a total of 4, 3, 3, 9, 6, 2, and 1 SNPs were significantly associated with PBW, PR, CD, AFC, BWT, WWT, and ADG, respectively. These SNPs were located on chromosomes 1, 5–7, 9, 13–16, 19–21, 24, 25, and 27–29. Chromosomes 1, 5, and 24 had SNPs with pleiotropic effects. New significant SNPs that impact functional traits were detected, many of which have not been previously reported. The results of this study support quantitative genetic studies related to the inheritance of these traits, and provides new knowledge regarding beef cattle quantitative trait loci effects. The identification of these SNPs provides a starting point to identify genes affecting heifer reproduction traits and performance of their calves (BWT, WWT, and ADG). They also contribute to a better understanding of the biology underlying these traits and will be potentially useful in marker- and genome-assisted selection and management.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dennis Katuuramu ◽  
Sandra Branham ◽  
Amnon Levi ◽  
Patrick Wechter

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas Citrullus amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 - 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding disease resistance proteins, leucine-rich repeat receptor-like protein kinase, and WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


Author(s):  
Haijiang Liu ◽  
xiaojuan Li ◽  
Qianwen Zhang ◽  
pan yuan ◽  
Lei Liu ◽  
...  

Phytate is the storage form of phosphorus in angiosperm seeds and plays vitally important roles during seed development. However, in crop plants phytate decreases bioavailability of seed-sourced mineral elements for humans, livestock and poultry, and contributes to phosphate-related water pollution. However, there is little knowledge about this trait in oilseed rape B. napus (oilseed rape). Here, a panel of 505 diverse B. napus accessions was screened in a genome-wide association study (GWAS) using 3.28 x 106 single nucleotide polymorphisms (SNPs). This identified 119 SNPs significantly associated with phytate concentration (PA_Conc) and phytate content (PA_Cont) and six candidate genes were identified. Of these, BnaA9.MRP5 represented the candidate gene for the significant SNP chrA09_5198034 (27kb) for both PA_Cont and PA_Conc. Transcription of BnaA9.MRP5 in a low -phytate variety (LPA20) was significantly elevated compared with a high -phytate variety (HPA972). Association and haplotype analysis indicated that inbred lines carrying specific SNP haplotypes within BnaA9.MRP5 were associated with high- and low-phytate phenotypes. No significant differences in seed germination and seed yield were detected between low and high phytate cultivars examined. Candidate genes, favorable haplotypes and the low phytate varieties identified in this study will be useful for low-phytate breeding of B. napus.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Liping Guan ◽  
Ke Cao ◽  
Yong Li ◽  
Jian Guo ◽  
Qiang Xu ◽  
...  

Abstract Background Peach (Prunus persica L.) is a diploid species and model plant of the Rosaceae family. In the past decade, significant progress has been made in peach genetic research via DNA markers, but the number of these markers remains limited. Results In this study, we performed a genome-wide DNA markers detection based on sequencing data of six distantly related peach accessions. A total of 650,693~1,053,547 single nucleotide polymorphisms (SNPs), 114,227~178,968 small insertion/deletions (InDels), 8386~12,298 structure variants (SVs), 2111~2581 copy number variants (CNVs) and 229,357~346,940 simple sequence repeats (SSRs) were detected and annotated. To demonstrate the application of DNA markers, 944 SNPs were filtered for association study of fruit ripening time and 15 highly polymorphic SSRs were selected to analyze the genetic relationship among 221 accessions. Conclusions The results showed that the use of high-throughput sequencing to develop DNA markers is fast and effective. Comprehensive identification of DNA markers, including SVs and SSRs, would be of benefit to genetic diversity evaluation, genetic mapping, and molecular breeding of peach.


2019 ◽  
Vol 70 (18) ◽  
pp. 4849-4864 ◽  
Author(s):  
Jingyang Gao ◽  
Songfeng Wang ◽  
Zijian Zhou ◽  
Shiwei Wang ◽  
Chaopei Dong ◽  
...  

AbstractIt is predicted that high-temperature stress will increasingly affect crop yields worldwide as a result of climate change. In order to determine the genetic basis of thermotolerance of seed-set in maize under field conditions, we performed mapping of quantitative trait loci (QTLs) in a recombinant inbred line (RIL) population using a collection of 8329 specifically developed high-density single-nucleotide polymorphism (SNP) markers, combined with a genome-wide association study (GWAS) of 261 diverse maize lines using 259 973 SNPs. In total, four QTLs and 17 genes associated with 42 SNPs related to thermotolerance of seed-set were identified. Among them, four candidate genes were found in both linkage mapping and GWAS. Thermotolerance of seed-set was increased significantly in near-isogenic lines (NILs) that incorporated the four candidate genes in a susceptible parent background. The expression profiles of two of the four genes showed that they were induced by high temperatures in the maize tassel in a tolerant parent background. Our results indicate that thermotolerance of maize seed-set is regulated by multiple genes each of which has minor effects, with calcium signaling playing a central role. The genes identified may be exploited in breeding programs to improve seed-set and yield of maize under heat stress.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Leonardo Caproni ◽  
Lorenzo Raggi ◽  
Elise F. Talsma ◽  
Peter Wenzl ◽  
Valeria Negri

AbstractMineral deficiencies represent a global challenge that needs to be urgently addressed. An adequate intake of iron and zinc results in a balanced diet that reduces chances of impairment of many metabolic processes that can lead to clinical consequences. In plants, bioavailability of such nutrients is reduced by presence of compounds such as phytic acid, that can chelate minerals and reduce their absorption. Biofortification of common bean (Phaseolus vulgaris L.) represents an important strategy to reduce mineral deficiencies, especially in areas of the world where this crop plays a key role in the diet. In this study, a panel of diversity encompassing 192 homozygous genotypes, was screened for iron, zinc and phytate seed content. Results indicate a broad variation of these traits and allowed the identification of accessions reasonably carrying favourable trait combinations. A significant association between zinc seed content and some molecular SNP markers co-located on the common bean Pv01 chromosome was detected by means of genome-wide association analysis. The gene Phvul001G233500, encoding for an E3 ubiquitin-protein ligase, is proposed to explain detected associations. This result represents a preliminary evidence that can foster future research aiming at understanding the genetic mechanisms behind zinc accumulation in beans.


2017 ◽  
Vol 3 (5) ◽  
pp. e185 ◽  
Author(s):  
Ashley Beecham ◽  
Chuanhui Dong ◽  
Clinton B. Wright ◽  
Nicole Dueker ◽  
Adam M. Brickman ◽  
...  

Objective:To investigate genetic variants influencing white matter hyperintensities (WMHs) in the understudied Hispanic population.Methods:Using 6.8 million single nucleotide polymorphisms (SNPs), we conducted a genome-wide association study (GWAS) to identify SNPs associated with WMH volume (WMHV) in 922 Hispanics who underwent brain MRI as a cross-section of 2 community-based cohorts in the Northern Manhattan Study and the Washington Heights–Inwood Columbia Aging Project. Multiple linear modeling with PLINK was performed to examine the additive genetic effects on ln(WMHV) after controlling for age, sex, total intracranial volume, and principal components of ancestry. Gene-based tests of association were performed using VEGAS. Replication was performed in independent samples of Europeans, African Americans, and Asians.Results:From the SNP analysis, a total of 17 independent SNPs in 7 genes had suggestive evidence of association with WMHV in Hispanics (p < 1 × 10−5) and 5 genes from the gene-based analysis with p < 1 × 10−3. One SNP (rs9957475 in GATA6) and 1 gene (UBE2C) demonstrated evidence of association (p < 0.05) in the African American sample. Four SNPs with p < 1 × 10−5 were shown to affect binding of SPI1 using RegulomeDB.Conclusions:This GWAS of 2 community-based Hispanic cohorts revealed several novel WMH-associated genetic variants. Further replication is needed in independent Hispanic samples to validate these suggestive associations, and fine mapping is needed to pinpoint causal variants.


2021 ◽  
Vol 32 (Issue 1) ◽  
pp. 25-33
Author(s):  
M. Ruiz ◽  
E.A. Rossi ◽  
N.C. Bonamico ◽  
M.G. Balzarini

Maize (Zea Mays L.) production has been greatly benefited from the improvement of inbred lines in regard to the resistance to diseases. However, the absence of resistant genotypes to bacteriosis is remarkable. The aim of the study was to identify genomic regions for resistance to Mal de Río Cuarto (MRC) and to bacterial disease (BD) in a diverse maize germplasm evaluated in the Argentinian region where MRC virus is endemic. A maize diverse population was assessed for both diseases during the 2019-2020 crop season. Incidence and severity of MRC and BD were estimated for each line and a genome wide association study (GWAS) was conducted with 78,376 SNP markers. A multi-trait mixed linear model was used for simultaneous evaluation of resistance to MRC and BD in the scored lines. The germplasm showed high genetic variability for both MRC and BD resistance. No significant genetic correlation was observed between the response to both diseases. Promising genomic regions for resistance to MRC and BD were identified and will be confirmed in further trials. Key words: maize disease; genome wide association study; SNP; multi-trait model


2021 ◽  
Vol 32 (Issue 1) ◽  
pp. 25-33
Author(s):  
M. Ruiz ◽  
E.A. Ross ◽  
N.C. Bonamico ◽  
M.G. Balzarini

Maize (Zea Mays L.) production has been greatly benefited from the improvement of inbred lines in regard to the resistance to diseases. However, the absence of resistant genotypes to bacteriosis is remarkable. The aim of the study was to identify genomic regions for resistance to Mal de Río Cuarto (MRC) and to bacterial disease (BD) in a diverse maize germplasm evaluated in the Argentinian region where MRC virus is endemic. A maize diverse population was assessed for both diseases during the 2019-2020 crop season. Incidence and severity of MRC and BD were estimated for each line and a genome wide association study (GWAS) was conducted with 78,376 SNP markers. A multi-trait mixed linear model was used for simultaneous evaluation of resistance to MRC and BD in the scored lines. The germplasm showed high genetic variability for both MRC and BD resistance. No significant genetic correlation was observed between the response to both diseases. Promising genomic regions for resistance to MRC and BD were identified and will be confirmed in further trials. Key words: maize disease; genome wide association study; SNP; multi-trait model


Sign in / Sign up

Export Citation Format

Share Document