Development and molecular characterization of wheat – Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc

Genome ◽  
2011 ◽  
Vol 54 (11) ◽  
pp. 943-953 ◽  
Author(s):  
Nidhi Rawat ◽  
Kumari Neelam ◽  
Vijay K. Tiwari ◽  
Gursharn S. Randhawa ◽  
Bernd Friebe ◽  
...  

Over two billion people, depending largely on staple foods, suffer from deficiencies in protein and some micronutrients such as iron and zinc. Among various approaches to overcome protein and micronutrient deficiencies, biofortification through a combination of conventional and molecular breeding methods is the most feasible, cheapest, and sustainable approach. An interspecific cross was made between the wheat cultivar ‘Chinese Spring’ and Aegilops kotschyi Boiss. accession 396, which has a threefold higher grain iron and zinc concentrations and about 33% higher protein concentration than wheat cultivars. Recurrent backcrossing and selection for the micronutrient content was performed at each generation. Thirteen derivatives with high grain iron and zinc concentrations and contents, ash and ash micronutrients, and protein were analyzed for alien introgression. Morphological markers, high molecular weight glutenin subunit profiles, anchored wheat microsatellite markers, and GISH showed that addition and substitution of homoeologous groups 1, 2, and 7 chromosomes of Ae. kotschyi possess gene(s) for high grain micronutrients. The addition of 1U/1S had high molecular weight glutenin subunits with higher molecular weight than those of wheat, and the addition of 2S in most of the derivatives also enhanced grain protein content by over 20%. Low grain protein content in a derivative with a 2S-wheat translocation, waxy leaves, and absence of the gdm148 marker strongly suggests that the gene for higher grain protein content on chromosome 2S is orthologous to the grain protein QTL on the short arm of group 2 chromosomes.

2021 ◽  
Vol 29 ◽  
pp. 87-91
Author(s):  
N. A. Kozub ◽  
I.O. Sozinov ◽  
H.Ya. Bidnyk ◽  
N.O. Demianova ◽  
O.I. Sozinova ◽  
...  

Aim. The aim of this study was to analyze grain quality indices in winter common wheat lines with introgressions of chromosome 1U from Aegilops biuncialis Vis. marked by storage protein loci. Methods. Acid polyacrylamide gel electrophoresis and SDS-electrophoresis of storage proteins were performed to identify introgressions. Grain quality indices (SDS sedimentation volume and grain protein content) were analyzed in lines with introgressed chromosome 1U or its arm 1UL, as well as in the cultivars Panna and Bezostaya 1. Results. SDS-sedimentation volume in the cultivars and lines depended on year’s conditions. The studying of the lines during two years has demonstrated that the presence of the allele at the high molecular weight glutenin subunit locus Glu-U1 from Ae. biuncialis was associated with a high volume of SDS-sedimentation SDS30 (higher than that in the cultivar Bezostaya 1). The introgressive lines show high grain protein content. Conclusions. The effect of the allele at the high molecular weight glutenin subunit locus Glu-U1 from Ae. biuncialis on SDS-sedimentation value is similar to that of the high-quality allele Glu-B1al. The lines with the introgressed allele at Glu-U1 from Ae. biuncialis are valuable initial material for breeding for quality.Keywords: Triticum aestivum, Aegilops biuncialis, high molecular weight glutenin subunits, SDS-sedimentation, protein content.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2845
Author(s):  
Pablo F. Roncallo ◽  
Carlos Guzmán ◽  
Adelina O. Larsen ◽  
Ana L. Achilli ◽  
Susanne Dreisigacker ◽  
...  

Durum wheat grains (Triticum turgidum L. ssp. durum) are the main source for the production of pasta, bread and a variety of products consumed worldwide. The quality of pasta is mainly defined by the rheological properties of gluten, an elastic network in wheat endosperms formed of gliadins and glutenins. In this study, the allelic variation at five glutenin loci was analysed in 196 durum wheat genotypes. Two loci (Glu-A1 and Glu-B1), encoding for high-molecular-weight glutenin subunits (HMW-GS), and three loci (Glu-B2, Glu-A3 and Glu-B3), encoding for low molecular weight glutenin subunits (LMW-GS), were assessed by SDS-PAGE. The SDS-sedimentation test was used and the grain protein content was evaluated. A total of 32 glutenin subunits and 41 glutenin haplotypes were identified. Four novel alleles were detected. Fifteen haplotypes represented 85.7% of glutenin loci variability. Some haplotypes carrying the 7 + 15 and 7 + 22 banding patterns at Glu-B1 showed a high gluten strength similar to those that carried the 7 + 8 or 6 + 8 alleles. A decreasing trend in grain protein content was observed over the last 85 years. Allelic frequencies at the three main loci (Glu-B1, Glu-A3 and Glu-B3) changed over the 1915–2020 period. Gluten strength increased from 1970 to 2020 coinciding with the allelic changes observed. These results offer valuable information for glutenin haplotype-based selection for use in breeding programs.


2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Saule Kenzhebayeva ◽  
Alfia Abekova ◽  
Saule Atabayeva ◽  
Gulzira Yernazarova ◽  
Nargul Omirbekova ◽  
...  

Deficiency of metals, primarily Fe and Zn, affects over half of the world’s population. Human diets dominated by cereal products cause micronutrient malnutrition, which is common in many developing countries where populations depend heavily on staple grain crops such as wheat, maize, and rice. Biofortification is one of the most effective approaches to alleviate malnutrition. Genetically stable mutant spring wheat lines (M7 generation) produced via 100 or 200 Gy gamma treatments to broaden genetic variation for grain nutrients were analyzed for nutritionally important minerals (Ca, Fe, and Zn), their bioavailability, and grain protein content (GPC). Variation was 172.3–883.0 mg/kg for Ca, 40.9–89.0 mg/kg for Fe, and 22.2–89.6 mg/kg for Zn. In mutant lines, among the investigated minerals, the highest increases in concentrations were observed in Fe, Zn, and Ca when compared to the parental cultivar Zhenis. Some mutant lines, mostly in the 100 Gy-derived germplasm, had more than two-fold higher Fe, Zn, and Ca concentrations, lower phytic acid concentration (1.4–2.1-fold), and 6.5–7% higher grain protein content compared to the parent. Variation was detected for the molar ratios of Ca:Phy, Phy:Fe, and Phy:Zn (1.27–10.41, 1.40–5.32, and 1.78–11.78, respectively). The results of this study show how genetic variation generated through radiation can be useful to achieve nutrient biofortification of crops to overcome human malnutrition.


Author(s):  
Isaiah O. Ochieng’ ◽  
Harun I. Gitari ◽  
Benson Mochoge ◽  
Esmaeil Rezaei-Chiyaneh ◽  
Joseph P. Gweyi-Onyango

2013 ◽  
Vol 13 (1) ◽  
pp. 35 ◽  
Author(s):  
Shengguan Cai ◽  
Gang Yu ◽  
Xianhong Chen ◽  
Yechang Huang ◽  
Xiaogang Jiang ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e73751 ◽  
Author(s):  
Domenica Nigro ◽  
Yong Q. Gu ◽  
Naxin Huo ◽  
Ilaria Marcotuli ◽  
Antonio Blanco ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 374
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Adequate N fertilisation is crucial to increase the grain protein content (GPC) values in wheat. The recommended level of GPC needed to achieve high-quality bread-making flour should be higher than 12.5%. However, it is difficult to ensure the GPC values that the crop will achieve because N in grain is derived from two different sources: N remobilized into the grain from N accumulated in the pre-anthesis period, and N absorbed from the soil in the post-anthesis period. This study aimed to (i) evaluate the effect of the application of N on the rate of stem elongation (GS30) when farmyard manures are applied as initial fertilisers on GPC and on the chlorophyll meter (CM) values at mid-anthesis (GS65), (ii) establish a relationship between the CM values at GS65 and GPC, and (iii) determine a minimum CM value at GS65 to obtain GPC values above 12.5%. Three field trials were performed in three consecutive growing seasons, and different N fertilisation doses were applied. Readings using the CM Yara N-TesterTM were taken at GS65. The type of initial fertiliser did not affect the GPC and CM values. Generally, the greater the N application at GS30 is, the higher the GPC and CM values are. CM values can help to estimate GPC values only when yields are below 8000 kg ha−1. Additionally, CM values at GS65 should be higher than 700 to achieve high-quality bread-making flour (12.5%) at such yield levels. These results will allow farmers and cooperatives to make better decisions regarding late-nitrogen fertilisation and wheat sales.


Sign in / Sign up

Export Citation Format

Share Document