Transcriptomic responses to aluminum stress in soybean roots

Genome ◽  
2011 ◽  
Vol 54 (11) ◽  
pp. 923-933 ◽  
Author(s):  
Jiangfeng You ◽  
Hongmei Zhang ◽  
Ning Liu ◽  
Lingling Gao ◽  
Lingnan Kong ◽  
...  

Aluminum (Al) toxicity is the primary limitation to crop production and plant growth in acid soils. Soybean has multiple mechanisms of Al resistance including the complexing and exclusion of Al in root apices by Al-induced citrate secretion. Microarray analysis is available for the identification of genes in soybean. In the present study, Affymetrix soybean genome array was used to identify the Al-induced differentially expressed genes in Al-resistant genotype Jiyu 70. With a cutoff of >2.0-fold (p < 0.05) between non Al-treated and Al-treated root apices, 561 genes were upregulated and 78 genes were downregulated when roots were exposed to 30 µmol/L AlCl3 for 4 h. Quantitative real-time PCR was used to test the microarray data. The analysis showed that nearly half of the Al-responsive genes were of unknown biological function. A higher proportion of genes related to transcription regulation and cell wall processes were observed in Al-induced up- and downregulated genes, respectively. Some genes homologous to the citrate transporter MATE family gene or C2H2 family transcription factor gene, STOP1, were detected in our analysis. Some genes related to lignin deposition were upregulated, which might be related to Al-induced root elongation inhibition.

2020 ◽  
Vol 21 (11) ◽  
pp. 4080
Author(s):  
Yang Liu ◽  
Jiameng Xu ◽  
Siyi Guo ◽  
Xianzheng Yuan ◽  
Shan Zhao ◽  
...  

Aluminum (Al) stress is a major limiting factor for plant growth and crop production in acid soils. At present, only a few transcription factors involved in the regulation of Al resistance have been characterized. Here, we used reversed genetic approach through phenotype analysis of overexpressors and mutants to demonstrate that AtHB7 and AtHB12, two HD-Zip I transcription factors, participate in Al resistance. In response to Al stress, AtHB7 and AtHB12 displayed different dynamic expression patterns. Although both AtHB7 and AtHB12 positively regulate root growth in the absence of Al stress, our results showed that AtHB7 antagonizes with AtHB12 to control root growth in response to Al stress. The athb7/12 double mutant displayed a wild-type phenotype under Al stress. Consistently, our physiological analysis showed that AtHB7 and AtHB12 oppositely regulate the capacity of cell wall to bind Al. Yeast two hybrid assays showed that AtHB7 and AtHB12 could form homo-dimers and hetero-dimers in vitro, suggesting the interaction between AtHB7 and AtHB12 in the regulation of root growth. The conclusion was that AtHB7 and AtHB12 oppositely regulate Al resistance by affecting Al accumulation in root cell wall.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Dechassa Duressa ◽  
Khairy Soliman ◽  
Robert Taylor ◽  
Zachary Senwo

Toxic levels of aluminum (Al) in acid soils inhibit root growth and cause substantial reduction in yields of Al-sensitive crops. Aluminum-tolerant cultivars detoxify Al through multiple mechanisms that are currently not well understood at genetic and molecular levels. To enhance our understanding of the molecular mechanisms involved in soybean Al tolerance and toxicity, we conducted proteomic analysis of soybean roots under Al stress using a tandem combination of 2-D-DIGE, mass spectrometry, and bioinformatics tools and Al-tolerant (PI 416937) and Al-sensitive (Young) soybean genotypes at 6, 51 or 72 h of Al treatment. Comparison of the protein profile changes revealed that aluminum induced Al tolerance related proteins and enzymes in Al-tolerant PI 416937 but evoked proteins related to general stress response in Al-sensitive Young. Specifically, Al upregulated: malate dehydrogenase, enolase, malate oxidoreductase, and pyruvate dehydrogenase, in PI 416937 but not in Young. These enzymes contribute to increased synthesis of citrate, a key organic acid involved in Al detoxification. We postulate that simultaneous transgenic overexpression of several of these enzymes would be a robust genetic engineering strategy for developing Al-tolerant crops.


Author(s):  
Esther Mwende Muindi

Liming and phosphorus (P) applications are recommended practices for improving crop production in acid soils of the tropics. Although considerable work has been done to establish liming rates for acid soils in many parts of the world, information on the effects of lime on the forms of aluminium which actively sorb P in such soils is minimal. A greenhouse pot experiment was conducted at Waruhiu Farmers Training Centre, Githunguri to evaluate the effect of liming on oxalate and dithionate extractable aluminium in acid soils. Extremely (pH 4.48) and strongly (pH 4.59) acidic soils were evaluated. Four liming (CaO) rates namely 0, 2.2, 5.2 and 7.4 tonnes ha-1 for extremely acidic and 0, 1.4, 3.2, and 4.5 tonnes ha-1 for  strongly acidic soils were evaluated. The experiment was laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Data collected included: initial soil chemical properties, oxalate (Alo) and dithionate (Ald) aluminium levels. The tested soils had high exchangeable Al (> 2 cmol Al kg-1), Al saturation of (> 20% Al) and low extractable P values (< 15 mg P kg-1 soil). Liming significantly (p=.05) reduced Alo by 70% and 68% in extremely and strongly acidic soils respectively and Ald by 78% in both extremely and strongly acidic soils compared to control. Use of 7.4 tonnes ha-1 of lime in extremely acidic soils and 4.5 tonnes ha-1 of lime in strongly acidic soils significantly (p=.05) reduced both Alo and Ald by > 68% compared to no lime. It was, therefore, concluded that liming contributes to the reduction of soluble Alo and Ald in acid soils of the Kenya highlands leading to increased soluble P availability. Studies are required to provide short and long term optimal liming rates that reduce Alo and Ald without distabilizing availability of other nutrients in field conditions under wide range of acid soils.


2001 ◽  
Vol 52 (3) ◽  
pp. 329 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
M. K. Conyers ◽  
B. R. Cullis ◽  
P. D. Cregan ◽  
...  

A long-term trial, known as ‘managing acid soils through efficient rotations’ (MASTER), commenced in 1992 to develop and demonstrate a cropping system that is economically viable on the highly acid soils of the traditional permanent pasture region in south-eastern Australia, so that their fertility is sustained or improved. There were 2 permanent pasture systems and 2 pasture–crop rotations, each with and without lime. This paper reports the effect of lime on crop production over the first cycle (6 years). On annual pasture–crop rotations, lime significantly increased the dry matter production at anthesis and grain yields of wheat (cv. Dollarbird) compared with the unlimed treatments. Averaged across years from 1992 to 1997 (excluding the severe drought year 1994), wheat crops produced 1.6 t/ha more grain on the limed treatments than on the unlimed treatments (3.6 v. 2.0 t/ha). On perennial pasture–crop rotations, the lime effects varied with crops grown at each phase and year. For example, despite being tolerant of acidity, oats (cv. Yarran) responded to lime in 1996. Likewise, triticale (cv. Abacus) responded to lime in 1997. Wheat (cv. Dollarbird) that is moderately tolerant to acidity responded to lime in phase 6 from 1992 to 1997 excluding 1994 (3.5 v. 1.7 t/ha). Acid-tolerant wheat varieties, triticale, and narrow-leaf lupins are considered the most viable crops for the soil and climatic conditions encountered in this high rainfall (5000—800 mm per annum) area of south-eastern Australia.


Author(s):  
S. Suthipradit ◽  
L. Nualsri ◽  
P. Sophanodora ◽  
Y. Limchitti ◽  
N. Kungpisdan

2014 ◽  
Vol 9 (31) ◽  
pp. 2397-2408 ◽  
Author(s):  
P. O Kisinyo ◽  
P. A. Opala ◽  
S. O. Gudu ◽  
C. O. Othieno ◽  
J. R Okalebo ◽  
...  

2020 ◽  
Vol 71 (20) ◽  
pp. 6512-6523
Author(s):  
Liyuan Wu ◽  
Yiyi Guo ◽  
Shengguan Cai ◽  
Liuhui Kuang ◽  
Qiufang Shen ◽  
...  

Abstract Aluminum (Al) toxicity is a major abiotic stress that restricts crop production in acid soils. Plants have evolved internal and external mechanisms of tolerance, and among them it is well known that AtSTOP1 and OsART1 are key transcription factors involved in tolerance through regulation of multiple downstream genes. Here, we identified the closest homolog of these two proteins in barley, namely HvATF1, Al-tolerance Transcription Factor 1, and determined its potential function in Al stress. HvATF1 is expressed in the nucleus, and functions in transcriptional activation. The transcription of HvATF1 was found to be constitutive in different tissues, and was little affected by Al stress. Knockdown of HvATF1 by RNAi resulted in increased Al sensitivity. Transcriptomics analysis identified 64 differently expressed genes in the RNAi lines compared to the wild-type, and these were considered as candidate downstream genes regulated by HvATF1. This study provides insights into the different molecular mechanisms of Al tolerance in barley and other plants.


Author(s):  
Bulti Merga ◽  
Abdulatif Ahmed

Ethiopia’s agricultural production has been challenged by waterlogging, salinity, acidity, parasitic weed, and irrigation scheduling problems which has resulted in lower yields than the potential. Waterlogging is the main drainage problem in the small scale irrigation schemes in the Vertisols dominated highland areas while salinity and salinization is a common phenomenon in the large and medium scale irrigation schemes located in the lowlands of the country’s major river basins with predominantly salt affected soils. Soil acidity and associated low nutrient availability is one of the constraints to crop production on acid soils. Lime requirement for crops grown on acid soils is determined by the quality of liming material, status of soil fertility, crop species and varieties, crop management practices, and economic considerations. A considerable loss in growth and yield of many food and fodder crops is caused by root-parasitic flowering plants. Globally, Striga and Orobanche have a greater impact on human welfare than any other parasitic angiosperms because their hosts are subsistence crops in areas marginal for agriculture. In irrigated agriculture, efficient water management is an important element. Such practices can help bust sustainable production and maintain farm profitability in which there is limited water resource.


2001 ◽  
Vol 24 (1-4) ◽  
pp. 221-230 ◽  
Author(s):  
Rodrigo D. Drummond ◽  
Claudia T. Guimarães ◽  
Juliana Felix ◽  
Fernando E. Ninamango-Cárdenas ◽  
Newton P. Carneiro ◽  
...  

Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops. In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood despite a growing number of studies, and in the specific case of sugarcane there are virtually no reports on the effects of gene regulation on aluminum stress. The objective of the work presented in this paper was to prospect the sugarcane expressed sequence tag (SUCEST) data bank for sugarcane genes related to several biochemical pathways known to be involved in the responses to aluminum toxicity in other plant species and yeast. Sugarcane genes similar to most of these genes were found, including those coding for enzymes that alleviate oxidative stress or combat infection by pathogens and those which code for proteins responsible for the release of organic acids and signal transducers. The role of these genes in aluminum tolerance mechanisms is reviewed. Due to the high level of genomic conservation in related grasses such as maize, barley, sorghum and sugarcane, these genes may be valuable tools which will help us to better understand and to manipulate aluminum tolerance in these species.


Sign in / Sign up

Export Citation Format

Share Document