Critical superposition instant of surge waves in surge tank with long headrace tunnel

2011 ◽  
Vol 38 (3) ◽  
pp. 331-337 ◽  
Author(s):  
XiaoDong Yu ◽  
Jian Zhang ◽  
Arash Hazrati

Superposed mass oscillation that often occurs in a throttled surge tank with a long headrace tunnel is studied. The instant of the worst superposition of mass oscillation in a surge tank is analysed. The analytical formula predicting the worst superposition instant is derived exactly and verified (1) with a numerical solution to the fundamental equations for the surge tank and (2) with a numerical simulation of hydraulic transients in an actual hydropower station. It is shown that the superposed oscillation provides the highest upsurge at the instant that the initial flow rate in the headrace tunnel and initial water level in the surge tank satisfy the judgement formula. The conclusion provides a theoretical and computational basis for the numerical simulation of maximum upsurge in a surge tank.

Author(s):  
Xiaodong Yu ◽  
Jian Zhang ◽  
Arash Hazrati ◽  
Sheng Chen

A numerical model of fluid transients in long corridor surge tank, based on the equations of Saint-Venant, is developed. The implicit method of Preissman, with appropriate boundary conditions, is used to solve these two nonlinear partial differential equations. The hydraulic transients with new model and normal surge tank model are simulated and compared with model experiments. It is clarified that the new numerical model can simulate the changes of water level in long corridor surge tank and pressure along penstock realistically. The new model provides scientific basis for studying hydraulic transients of hydropower station with long corridor surge tank.


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Author(s):  
Lingjiu Zhou ◽  
Zhengwei Wang ◽  
Yongyao Luo ◽  
Guangjie Peng

The 3-D unsteady Reynolds averaged Navier-tokes equations based on the pseudo-homogeneous flow theory and a vapor fraction transport-equation that accounts for non-condensable gas are solved to simulate cavitating flow in a Francis turbine. The calculation results agreed with experiment data reasonably. With the decrease of the Thoma number, the cavity first appears near the centre of the hub. At this stage the flow rate and the efficiency change little. Then the cavity near the centre of the hub grows thick and the cavities also appear on the blade suction side near outlet. With further reduce of the Thoma number the cavitation extends to the whole flow path, which causes flow rate and efficiency decrease rapidly.


Author(s):  
Yoshiyuki Iso ◽  
Xi Chen

Gas-liquid two-phase flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, distillation and others. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the details on the wetted wall flow behavior in packing elements are important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focused on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, the three-dimensional gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, as one of new interesting findings in this paper, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Additionally, the applicability and accuracy of the present numerical simulation were validated by using the existing experimental and theoretical studies with smooth wall surface. Secondary, referring to the texture geometry used in an industrial packing element, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area.


2017 ◽  
Vol 29 (5) ◽  
pp. 845-853 ◽  
Author(s):  
Fang Cai ◽  
Yong-guang Cheng ◽  
Lin-sheng Xia ◽  
Yong-qi Jiang

Sign in / Sign up

Export Citation Format

Share Document