Numerical Simulation of Cavitating Flow in a Francis Turbine

Author(s):  
Lingjiu Zhou ◽  
Zhengwei Wang ◽  
Yongyao Luo ◽  
Guangjie Peng

The 3-D unsteady Reynolds averaged Navier-tokes equations based on the pseudo-homogeneous flow theory and a vapor fraction transport-equation that accounts for non-condensable gas are solved to simulate cavitating flow in a Francis turbine. The calculation results agreed with experiment data reasonably. With the decrease of the Thoma number, the cavity first appears near the centre of the hub. At this stage the flow rate and the efficiency change little. Then the cavity near the centre of the hub grows thick and the cavities also appear on the blade suction side near outlet. With further reduce of the Thoma number the cavitation extends to the whole flow path, which causes flow rate and efficiency decrease rapidly.

2012 ◽  
Vol 214 ◽  
pp. 102-107
Author(s):  
Xiao Hui He ◽  
Lei Gao ◽  
Hong Bing Liu ◽  
Zhi Gang Li

This paper has studied the partial cavitation of 2-D hydrofoil based on the theory of viscous flow. The numerical calculation sets forth from the complete N-S equation and adopts the two-equation turbulence model closed Reynolds equation. As the basic control equation, the cavitating flow adopts the Rayleigh plesset model and calculates the zero angle of attack. At the same time, it calculates the influences of different ship speeds on the hydrofoil partial cavitating flow and analyzes the flow field of the hydrofoil. In addition, it makes comparisons on the calculation results and the published test conclusions. The results have shown that the calculation method in this paper has relatively good calculation precise degree.


Author(s):  
XingYing Ji ◽  
Lai Xu ◽  
Xiao Liu

Put forward a method of calculating the axial thrust of Francis turbine. To use numerical simulation computing the axial thrust on hub, shroud and blade of inner runner, combine theoretical methods calculating the pressure on hub and shroud of outer runner, finally the axial thrust of Francis turbine is obtained. The results of calculation agree with the results of model test. It is an effective way of gathering the theoretical calculation and numerical simulation to calculate the axial thrust of Francis turbine. In addition the static suction of turbine has great effect on calculation results of the axial thrust. The static suction of turbine plays a significant role on the lifting of turbine.


Author(s):  
Li Cheng ◽  
Jiren Zhou

The incompressible N-S equations are solved by the finite volume method. Based on the standard k-e model, the SIMPLEC algorithm is applied for the solution of the discretization governing equation. Using CFD, the flow pattern in the forebay of pumping station is revealed. The calculation results showed that there were large scale recirculation in the forebay of original scheme and the flow patterns of optimized forebay with bottom sills were improved. The calculated results were in good agreement with experiment data, which show that the calculated model was reliable and practical.


2021 ◽  
Vol 11 (11) ◽  
pp. 4990
Author(s):  
Boris Benderskiy ◽  
Peter Frankovský ◽  
Alena Chernova

This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for spatial objects is based on the solution conjugate problem of heat exchange by the control volume method in the open integrated platform for numerical simulation of continuum mechanics problems (openFoam). The calculation results for gas-dynamic and thermal processes in the power plant with a four-nozzle cover are presented. The analysis of gas-dynamic parameters and thermal flows near the nozzle cover, depending on the canal geometry, is given. The topological features of the flow structure and thermophysical parameters near the nozzle cap were studied. For the first time, the transformation of topological features of the flow structure in the pre-nozzle volume at changes in the mass channel’s geometry is revealed, described, and analyzed. The dependence of the Nusselt number in the central point of stagnation on the time of the power plants operation is revealed.


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Sign in / Sign up

Export Citation Format

Share Document