Mast cell response during the early phase of tuberculosis: an electron-microscopic study

1977 ◽  
Vol 23 (9) ◽  
pp. 1245-1251 ◽  
Author(s):  
Samuel Ratnam ◽  
Shobhitha Ratnam ◽  
B. K. Puri ◽  
Saroj Chandrasekhar

Guinea pig lungs were infected with Mycobacterium tuberculosis by intratracheal route and examined under electron microscope to investigate the morphological alterations of the organisms, if any, and the response of the host tissue. The bacilli showed no changes in their morphology, while the host tissues revealed several cells containing many electron-dense intracytoplasmic granules. These cells were predominantly seen during the 1st week of infection. The electron-dense bodies of these cells may be the ones observed by earlier workers and suggested to be the altered forms of tubercle bacilli. The present investigation, however, revealed them to be the granules of the mast cells. These cells were observed to respond to tuberculous infection during the first few days by appearing in large numbers crowded with intracytoplasmic granules and soon disintegrating as the result of subsequent degranulation. The above observation is presented and its significance discussed.

Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Mitsuo Ohtsuki ◽  
Michael Sogard

Structural investigations of biological macromolecules commonly employ CTEM with negative staining techniques. Difficulties in valid image interpretation arise, however, due to problems such as variability in thickness and degree of penetration of the staining agent, noise from the supporting film, and artifacts from defocus phase contrast effects. In order to determine the effects of these variables on biological structure, as seen by the electron microscope, negative stained macromolecules of high density lipoprotein-3 (HDL3) from human serum were analyzed with both CTEM and STEM, and results were then compared with CTEM micrographs of freeze-etched HDL3. In addition, we altered the structure of this molecule by digesting away its phospholipid component with phospholipase A2 and look for consistent changes in structure.


Author(s):  
F.J. Sjostrand

In the 1940's and 1950's electron microscopy conferences were attended with everybody interested in learning about the latest technical developments for one very obvious reason. There was the electron microscope with its outstanding performance but nobody could make very much use of it because we were lacking proper techniques to prepare biological specimens. The development of the thin sectioning technique with its perfectioning in 1952 changed the situation and systematic analysis of the structure of cells could now be pursued. Since then electron microscopists have in general become satisfied with the level of resolution at which cellular structures can be analyzed when applying this technique. There has been little interest in trying to push the limit of resolution closer to that determined by the resolving power of the electron microscope.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
T. Kanetaka ◽  
M. Cho ◽  
S. Kawamura ◽  
T. Sado ◽  
K. Hara

The authors have investigated the dissolution process of human cholesterol gallstones using a scanning electron microscope(SEM). This study was carried out by comparing control gallstones incubated in beagle bile with gallstones obtained from patients who were treated with chenodeoxycholic acid(CDCA).The cholesterol gallstones for this study were obtained from 14 patients. Three control patients were treated without CDCA and eleven patients were treated with CDCA 300-600 mg/day for periods ranging from four to twenty five months. It was confirmed through chemical analysis that these gallstones contained more than 80% cholesterol in both the outer surface and the core.The specimen were obtained from the outer surface and the core of the gallstones. Each specimen was attached to alminum sheet and coated with carbon to 100Å thickness. The SEM observation was made by Hitachi S-550 with 20 kV acceleration voltage and with 60-20, 000X magnification.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Author(s):  
T. G. Merrill ◽  
B. J. Payne ◽  
A. J. Tousimis

Rats given SK&F 14336-D (9-[3-Dimethylamino propyl]-2-chloroacridane), a tranquilizing drug, developed an increased number of vacuolated lymphocytes as observed by light microscopy. Vacuoles in peripheral blood of rats and humans apparently are rare and are not usually reported in differential counts. Transforming agents such as phytohemagglutinin and pokeweed mitogen induce similar vacuoles in in vitro cultures of lymphocytes. These vacuoles have also been reported in some of the lipid-storage diseases of humans such as amaurotic familial idiocy, familial neurovisceral lipidosis, lipomucopolysaccharidosis and sphingomyelinosis. Electron microscopic studies of Tay-Sachs' disease and of chloroquine treated swine have demonstrated large numbers of “membranous cytoplasmic granules” in the cytoplasm of neurons, in addition to lymphocytes. The present study was undertaken with the purpose of characterizing the membranous inclusions and developing an experimental animal model which may be used for the study of lipid storage diseases.


Author(s):  
R. Stephens ◽  
G. Schidlovsky ◽  
S. Kuzmic ◽  
P. Gaudreau

The usual method of scraping or trypsinization to detach tissue culture cell sheets from their glass substrate for further pelletization and processing for electron microscopy introduces objectionable morphological alterations. It is also impossible under these conditions to study a particular area or individual cell which have been preselected by light microscopy in the living state.Several schemes which obviate centrifugation and allow the embedding of nondetached tissue culture cells have been proposed. However, they all preserve only a small part of the cell sheet and make use of inverted gelatin capsules which are in this case difficult to handle.We have evolved and used over a period of several years a technique which allows the embedding of a complete cell sheet growing at the inner surface of a tissue culture roller tube. Observation of the same cell by light microscopy in the living and embedded states followed by electron microscopy is performed conveniently.


Author(s):  
J. C. Russ ◽  
E. McNatt

In order to study the retention of copper in cirrhotic liver, rats were made cirrhotic by carbon tetrachloride inhalation twice weekly for three months and fed 0.2% copper acetate ad libidum in drinking water for one month. The liver tissue was fixed in osmium, sectioned approximately 2000 Å thick, and stained with lead citrate. The section was examined in a scanning electron microscope (JEOLCO JSM-2) in the transmission electron mode.Figure 1 shows a typical area that includes a red blood cell in a sinusoid, a disse, and a portion of the cytoplasm of a hepatocyte which contains several mitochondria, peribiliary dense bodies, glycogen granules, and endoplasmic reticulum.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


Sign in / Sign up

Export Citation Format

Share Document