The differential susceptibility of gonococcal opacity variants to sex hormones

1982 ◽  
Vol 28 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Irving E. Salit

Neisseria gonorrhoeae exist in transparent (Tr) and opaque (Op) colony forms. Op forms are recovered from patients early in the menstrual cycle; Tr colonies predominate late in the cycle. The mechanism for this colonial variation was examined by determining the influence of gonodal hormones on growth inhibition of Op and Tr isogenic variants of gonococci. The estrogens, estrone and estradiol, enhanced growth whereas 19-nortestosterone, testosterone, and progesterone significantly inhibited gonococcal growth. Testosterone and progesterone inhibited growth of the Op variants to a greater degree than the Tr variants. Mixtures of Tr and Op colonies grown in the presence of progesterone became predominantly Tr, as occurs in the luteal phase of the menstrual cycle. This study supports the hypothesis of hormonal influence on colonial variation but employed artificial in vitro conditions and high hormone levels.

2009 ◽  
Vol 27 (22) ◽  
pp. 3620-3626 ◽  
Author(s):  
Clive S. Grant ◽  
James N. Ingle ◽  
Vera J. Suman ◽  
Daniel A. Dumesic ◽  
D. Lawrence Wickerham ◽  
...  

Purpose For nearly two decades, multiple retrospective reports, small prospective studies, and meta-analyses have arrived at conflicting results regarding the value of timing surgical intervention for breast cancer on the basis of menstrual cycle phase. We present the results of a multi–cooperative group, prospective, observational trial of menstrual cycle phase and outcome after breast cancer surgery, led by the North Central Cancer Treatment Group (NCCTG) in collaboration with the National Surgical Adjuvant Breast and Bowel Project (NSABP) and the International Breast Cancer Study Group (IBCSG). Patients and Methods Premenopausal women age 18 to 55 years, who were interviewed for menstrual history and who were surgically treated for stages I to II breast cancer, had serum drawn within 1 day of surgery for estradiol, progesterone, and luteinizing hormone levels. Menstrual history and hormone levels were used to determine menstrual phase: luteal, follicular, and other. Disease-free survival (DFS) and overall survival (OS) rates were determined by Kaplan-Meier method and were compared by using the log-rank test and Cox proportional hazard modeling. Results Of 1,118 women initially enrolled, 834 women comprised the study cohort: 230 (28%) in luteal phase; 363 (44%) in follicular phase; and 241 grouped as other. During a median follow-up of 6.6 years, and in analysis that accounted for nodal disease, estrogen receptor status, adjuvant radiation therapy or chemotherapy, neither DFS nor OS differed with respect to menstrual phase. The 5-year DFS rates were 82.7%, 82.1%, and 79.2% for follicular, luteal, or other phases, respectively. Corresponding OS survival rates were 91.9%, 92.2%, and 91.8%, respectively. Conclusion When menstrual cycle phases were strictly defined, neither DFS nor OS differed between women who underwent surgery during the follicular phase versus the luteal phase. Nearly 30% of the patients did not meet criteria for either follicular- or luteal-phase categories.


2019 ◽  
Vol 34 (10) ◽  
pp. 2018-2026 ◽  
Author(s):  
Lanlan Fang ◽  
Yiping Yu ◽  
Yiran Li ◽  
Sijia Wang ◽  
Ruizhe Zhang ◽  
...  

Abstract STUDY QUESTION Does amphiregulin (AREG), the most abundant and important epidermal growth factor receptor (EGFR) ligand in the follicular fluid, regulate aromatase expression in human granulosa-lutein (hGL) cells? SUMMARY ANSWER AREG mediates the hCG-induced up-regulation of aromatase expression and estradiol (E2) production in hGL cells. WHAT IS KNOWN ALREADY AREG expression and secretion are rapidly induced by hCG in hGL cells and mediate physiological functions of LH/hCG in the ovary. EGFR protein is expressed in follicles not only in the pre-ovulatory phase but also throughout the luteal phase of the menstrual cycle. After the LH surge, the human corpus luteum secretes high levels of E2, which regulates various luteal cell functions. Aromatase is an enzyme responsible for a key step in the biosynthesis of E2. However, whether AREG regulates aromatase expression and E2 production in hGL cells remains unexplored. STUDY DESIGN, SIZE, DURATION This study is an experimental study performed over a 1-year period. In vitro investigations examined the role of AREG in the regulation of aromatase expression and E2 production in primary hGL cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary hGL cells were obtained from women undergoing IVF treatment in an academic research center. Aromatase mRNA and protein levels were examined after exposure of hGL cells to recombinant human AREG, hCG or LH. The EGFR tyrosine kinase inhibitor AG1478, PI3K inhibitor LY294002 and siRNAs targeting EGFR, LH receptor, StAR and AREG were used to verify the specificity of the effects and to investigate the underlying molecular mechanisms. Reverse transcription quantitative real-time PCR (RT-qPCR) and western blot were used to measure the specific mRNA and protein levels, respectively. Follicular fluid and serum were collected from 65 infertile women during IVF treatment. Pearson’s correlation analysis was performed to examine the correlation coefficient between two values. MAIN RESULTS AND THE ROLE OF CHANCE Treatment of hGL cells with AREG-stimulated aromatase expression and E2 production. Using pharmacological inhibitors and specific siRNAs, we revealed that AREG-stimulated aromatase expression and E2 production via EGFR-mediated activation of the protein kinase B (AKT) signaling pathway. In addition, inhibition of EGFR activity and AREG knockdown attenuated hCG-induced up-regulation of aromatase expression and E2 production. Importantly, the protein levels of AREG in the follicular fluid were positively correlated with the E2 levels in serum after 2 days of oocyte pick-up and in the follicular fluid of IVF patients. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The in vitro setting of this study is a limitation that may not reflect the real intra-ovarian microenvironment. Clinical data were obtained from a small sample size. WIDER IMPLICATIONS OF THE FINDINGS Our results provide the first evidence that hCG-induced AREG contributes to aromatase expression and E2 production in the luteal phase of the menstrual cycle. A better understanding of the hormonal regulation of female reproductive function may help to develop new strategies for the treatment of clinical infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China for Young Scientists (81601253), the specific fund of clinical medical research of Chinese Medical Association (16020160632) and the Foundation from the First Affiliated Hospital of Zhengzhou University for Young Scientists to Lanlan Fang. This work was also supported by an operating grant from the National Natural Science Foundation of China (81820108016) to Ying-Pu Sun. All authors declare no conflict of interest.


1993 ◽  
Vol 136 (3) ◽  
pp. 447-455 ◽  
Author(s):  
R. D. Nadler ◽  
J. F. Dahl ◽  
D. C. Collins

ABSTRACT The relationship between sex hormone concentrations and female genital swelling during the menstrual cycle in the monogamous gibbon was comparable with that of polygamous female primates, such as the chimpanzee, which live in multimale groups and have larger swellings. The data, therefore, support the hypothesis proposed by C. R. Carpenter more than 50 years ago, that the gibbon's genital swelling, like that of other female primates, reflects basic physiological processes associated with progress of the menstrual cycle. Genital swelling increased during the follicular phase with increasing concentrations of oestradiol and oestrone glucuronide, reached maximal swelling in association with the mid-cycle peaks in the oestrogens and LH and began detumescence with the initial increases in progesterone during the luteal phase. The data also suggest that the menstrual cycle of the gibbon is shorter than previously reported, since cycles of 19–22 days exhibited hormone patterns that are consistent with ovulation. The genital swelling of the female gibbon is a useful marker for monitoring progress of the menstrual cycle and the presumptive time of ovulation. Journal of Endocrinology (1993) 136, 447–455


BMJ ◽  
1972 ◽  
Vol 4 (5836) ◽  
pp. 333-336 ◽  
Author(s):  
K. Hillier ◽  
A. Dutton ◽  
C. S. Corker ◽  
A. Singer ◽  
M. P. Embrey

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S236-S236
Author(s):  
Maria Teresa Pons-Cabrera ◽  
Maria Sagué-Vilavella ◽  
Alexandre González-Rodríguez ◽  
Santiago Madero ◽  
Mireia Vázquez ◽  
...  

Abstract Background Kraepelin (1909) wrote about the association between female sex hormones and psychotic symptoms. He observed that women diagnosed with schizophrenia showed signs of gonadal dysfunction and hypoestrogenism. Antipsychotic drugs had not yet been introduced, so it cannot be interpreted as side effects. At the beginning of the 20th-century rhythmicity of psychotic symptoms through menstrual cycle was observed. The symptoms ameliorated when higher levels of estrogens were found. It was also noted during pregnancy. Reported cases and some studies confirmed these observations. Epidemiology shows a later peak of onset of psychosis in women. This protective role, also observed in clinical and animal studies, remains for the reproductive years and decreases by the time of menopause, when there’s a second important peak of onset in women. In spite of all these observations, few systematic investigations have been published about the effects of estrogens in women with schizophrenia. This study aims to investigate differences in the levels of sexual hormones between antipsychotic-naïve women with and without psychosis. Methods We performed a retrospective case-control study to compare the levels of sex hormones in blood of first-episode psychosis (FEP) and healthy control women (HC) of reproductive age, as a part of a NIH-NIDDK project on the study of hormonal factors and metabolism in psychosis. All participants were antipsychotic-naïve, in order to avoid bias from antipsychotic medication use. Four cases and four controls were recruited: cases were women newly diagnosed with primary non-affective psychosis at the emergency department of our hospital, and controls were mental health workers of similar age with no history of psychosis. Blood samples were obtained at the luteal phase of the menstrual cycle. We registered the following variables: age, psychosis status, last menstrual day and hormone blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and progesterone. We used descriptive statistics for age and hormone blood levels (mean and standard deviation -SD-) and we performed the Kruskal-Wallis test to determine any statistical differences of these variables regarding psychosis status. All participants provided informed consent. Ethical approval was obtained from the institutional ethics review board. Results The mean age of FEP was 31.4 years (SD 1.9) and 26.1 years (SD 3.5) for HC, with no statistically significant differences. Both FSH and LH were higher in FEP (FSH: mean 7 U/L, SD 1.7; LH: mean 8.4 U/L, SD 2.6) compared to HC (FSH: mean 3.5 U/L, SD 1.2; LH: mean 5.7 U/L, SD 3.3), reaching statistical significance in the case of FSH (p=0.015). 17-b-estradiol was lower in FEP (mean 75.3 pg/mL, SD 54.6) than in HC (mean 151 ng/mL, SD 102.1), although differences were not statistically significant Discussion We observed higher levels of FSH in women with psychosis compared to controls in the luteal phase. These women were antipsychotic-naïve; thus, these results are not a consequence of medication use. Our observations add evidence to the known relationship between altered hormonal levels and schizophrenia in women. The increase in FSH stimulates the production of estrogens, which are known to be low in psychosis compared to healthy controls. This finding supports the hypoestrogenism hypothesis of schizophrenia. Future studies with larger samples evaluating hormonal levels, psychotic symptoms and differences with hormonal treatments could lead to research of new adjunctive therapies or approaches.


2021 ◽  
Vol 6 (1) ◽  
pp. 327-331
Author(s):  
L. D. Popova ◽  
I. M. Vasylyeva ◽  
O. A. Nakonechna

The excessive aggression is an actual problem of modern society but the mechanisms of aggressiveness development have not been sufficiently investigated. Women aggression is considered to differ from men one and results obtained on males cannot be extrapolated on females. Sex hormones have a crucial role in the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. Hypothalamic pituitary adrenal axis and sympathoadrenal system are major neuroendocrine systems that respond to stress. Stress hormones are involved into behavioral reactions of organism. Gonadal, hypothalamic pituitary adrenal axes, and sympathoadrenal system are tightly interrelated and every of them can influence another one. The purpose of the study was to estimate correlation differences between sex and stress hormones in men and women. Material and methods. Forty healthy young people aged 18 to 22 years with a body mass index of 19-24 (21 women and 19 men) were enrolled in the study. Hormone levels in blood serum were determined by Testosterone, Estradiol, Cortisol ELISA kits (Italy), Epinephrine/Norepinephrine (EPI) ELISA kit (China). Results and discussion. In all phases of the menstrual cycle, the level of cortisol in women was lower than in men, but in the luteal phase these differences were not statistically significant. In all phases of the menstrual cycle, the blood serum norepinephrine content in women was lower than in men, but in the follicular phase these differences were not statistically significant. The level of epinephrine in women during ovulation and luteal phase did not differ from the level of epinephrine in men, but in follicular phase it was significantly lower. Calculations of correlations between individual hormones revealed a significant difference between them in men and women. Positive correlations between testosterone and estradiol and between cortisol and epinephrine; a strong negative correlation between epinephrine and testosterone/norepinephrine ratio were found in men. Positive correlation between testosterone and cortisol and negative correlation between estradiol and cortisol/testosterone ratio were revealed in women. Conclusion. In women, strong correlations were found between cortisol and sex hormones; in men, strong interrelationship was revealed between cortisol and epinephrine. Both in men and in women (in all phases of the menstrual cycle), high positive correlations between testosterone/norepinephrine and cortisol/norepinephrine ratios were observed


1979 ◽  
Vol 91 (1) ◽  
pp. 49-58 ◽  
Author(s):  
N. Goncharov ◽  
A. V. Antonichev ◽  
V. M. Gorluschkin ◽  
L. Chachundocova ◽  
D. M. Robertson ◽  
...  

ABSTRACT The peripheral plasma levels of luteinizing hormone (LH) as measured by an in vitro bioassay method were determined in daily plasma samples collected throughout one menstrual cycle in 8 normally menstruating baboons (Papio hamadryas). In addition LH was measured in plasma at three hourly intervals throughout the day in the follicular, peri-ovulatory and luteal phases of the cycle in 7, 3 and 6 animals respectively. The plasma levels of progesterone and oestradiol were also determined in the same samples throughout the menstrual cycle and during the period of the midcycle LH surge. The circulating LH profile measured throughout the cycle was characterized by a sharp mid-cycle surge (completed within one day) which was followed by a series of LH surges of varying intensity during the luteal phase of the cycle. The initial surge was considered to be pre-ovulatory as indicated by its relationship to the peak of plasma oestradiol and to the first significant increase in the levels of plasma progesterone above values found earlier in the follicular phase. A circadian rhythm of LH was observed during the luteal phase of the cycle; a 3 fold rise in LH was noted during the hours 15.00 to 24.00. No differences were observed throughout the day in the follicular phase of the cycle. The LH profile in three animals studied during the mid-cycle LH surge showed pronounced circadian changes with a major peak at 24.00 h. Plasma progesterone levels during this period rose sharply to values normally found in the mid-luteal phase of the cycle. A comparison of plasma levels of biologically active LH during the menstrual cycle of the baboon with those found in normally menstruating women reveals that in the baboon the LH peak is of much shorter duration and the levels in the follicular and peri-menstrual phases are significantly lower than in the human.


SLEEP ◽  
2019 ◽  
Vol 43 (2) ◽  
Author(s):  
Leilah K Grant ◽  
Joshua J Gooley ◽  
Melissa A St Hilaire ◽  
Shantha M W Rajaratnam ◽  
George C Brainard ◽  
...  

Abstract Study objectives Women in the luteal phase of the menstrual cycle exhibit better cognitive performance overnight than women in the follicular phase, although the mechanism is unknown. Given the link between core body temperature (CBT) and performance, one potential mechanism is the thermoregulatory role of progesterone (P4), estradiol (E2), and their ratio (P4/E2), which change across the menstrual cycle. We examined the role of P4/E2 in modulating performance during extended wake in premenopausal women. Additionally, we compared the acute effects of nighttime light exposure on performance, CBT, and hormones between the menstrual phases. Methods Participants were studied during a 50 h constant routine and a 6.5 h monochromatic nighttime light exposure. Participants were 16 healthy, naturally cycling women (eight follicular; eight luteal). Outcome measures included reaction time, attentional failures, self-reported sleepiness, CBT, melatonin, P4, and E2. Results As compared to women in the luteal phase, women in the follicular phase exhibited worse performance overnight. CBT was significantly associated with performance, P4, and P4/E2 but not with other sex hormones. Sex hormones were not directly related to performance. Light exposure that suppressed melatonin improved performance in the follicular phase (n = 4 per group) to levels observed during the luteal phase and increased CBT but without concomitant changes in P4/E2. Conclusions Our results underscore the importance of considering menstrual phase when assessing cognitive performance during sleep loss in women and indicate that these changes are driven predominantly by CBT. Furthermore, this study shows that vulnerability to sleep loss during the follicular phase may be resolved by exposure to light.


Sign in / Sign up

Export Citation Format

Share Document