Changes in bacterial populations in a clear-cut beech forest soil planted with spruce

1983 ◽  
Vol 29 (6) ◽  
pp. 644-648 ◽  
Author(s):  
Thu Kauri

A beech forest after clear-cutting was replanted with spruce. To study how this perturbation affected soil bacteria and their physiological capabilities, an investigation was undertaken 4 years after the change of forest type. Compared with an earlier study in the beech forest, from 1972 to 1975, conducted immediately before clear-cutting, bacterial numbers in the young spruce plantation had increased; an exception was the upper layer (A00), where the numbers decreased. The population densities of bacteria decomposing xylan, pectin, starch, cellulose, and chitin were estimated by a direct multipoint method. The numbers of bacteria in all the physiological groups studied were higher in 1979–1980, with the same exception as before (A00). The greatest changes occurred in the upper horizons. There were considerable changes in the soil environment after the former beech litter fall ceased; the forest floor became more exposed, and the ground vegetation changed. Changes took place in soil properties, such as organic matter and pH. A slight increase in pH was observed in all horizons except in A00, and organic matter increased in two of the horizons (A01/A1; A1).

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1542
Author(s):  
Nadezhda V. Genikova ◽  
Viktor N. Mamontov ◽  
Alexander M. Kryshen ◽  
Vladimir A. Kharitonov ◽  
Sergey A. Moshnikov ◽  
...  

Bilberry spruce forests are the most widespread forest type in the European boreal zone. Limiting the clear-cuttings size leads to fragmentation of forest cover and the appearance of large areas of ecotone complexes, composed of forest (F), a transition from forest to the cut-over site under tree canopy (FE), a transition from forest to the cut-over site beyond tree canopy (CE), and the actual clear-cut site (C). Natural regeneration of woody species (spruce, birch, rowan) in the bilberry spruce stand—clear-cut ecotone complex was studied during the first decade after logging. The effects produced by the time since cutting, forest edge aspect, and the ground cover on the emergence and growth of trees and shrubs under forest canopy and openly in the clear-cut were investigated. Estimating the amount and size of different species in the regeneration showed FE and CE width to be 8 m—roughly half the height of first-story trees. Typical forest conditions (F) feature a relatively small amount of regenerating spruce and birch. The most favorable conditions for natural regeneration of spruce in the clear-cut—mature bilberry spruce stand ecotone are at the forest edge in areas of transition both towards the forest and towards the clear-cut (FE and CE). Clear-cut areas farther from the forest edge (C) offer an advantage to regenerating birch, which grows densely and actively in this area.


2005 ◽  
Vol 9 (6) ◽  
pp. 657-674 ◽  
Author(s):  
A. Laurén ◽  
L. Finér ◽  
H. Koivusalo ◽  
T. Kokkonen ◽  
T. Karvonen ◽  
...  

Abstract. A two dimensional model, FEMMA, to describe water and nitrogen (N) fluxes within and from a forested first-order catchment (Kangasvaara in Eastern Finland) was constructed by linking the most significant processes affecting the fluxes of water, ammonium, nitrate and dissolved organic nitrogen along a hillslope from the water divide to the stream. The hillslope represents the average flowpath of water in the catchment and the model was used to estimate the N fluxes for a catchment in eastern Finland before and after clear-cutting. The simulated results were in reasonable agreement with the nitrate, dissolved organic N and dissolved total N measurements from the study catchment and with other results in the literature. According to the simulations, the major sinks of N after clear-cutting were immobilisation by soil microbes, uptake by ground vegetation and sorption to soil. These sinks increased downslope from the clear-cut area, indicating the importance of an uncut buffer zone between the stream and the clear-cut area in reducing N exports. The buffer zone retained 76% of the N flux coming from the clear-cut area. Nitrification was a key process in controlling the N export after clear-cutting and N increases were mainly as nitrate. Most of the annual N export took place during the spring flood, when uptake of N by plants was minimal.


2004 ◽  
Vol 34 (4) ◽  
pp. 959-968 ◽  
Author(s):  
Jean-David Moore ◽  
Rock Ouimet ◽  
Daniel Houle ◽  
Claude Camiré

The impact of selective cutting (6 and 8 years after treatment) and strip clear-cutting (12 and 13 years after treatment) on abundance and diversity of carabid beetles was evaluated in a northern hardwood forest of Quebec, Canada. A total of 1078 individuals belonging to 14 species were captured with pitfall traps from June to September 1996 during 2568 day-trap. Abundance of Synuchus impunctatus Say was significantly higher in clear-cut compared with uncut control strips. There were no within-species differences between selectively cut and uncut plots. None of these two silvicultural systems had any significant impacts on species diversity and richness 6–13 years after treatment. Although we observed an effect of strip clear-cutting on the abundance of S. impunctatus in this northern hardwood forest, the discrepancy between the response of carabids to forest disturbance in this study compared with other studies in different ecological regions suggests that the same carabid beetle species cannot be used as an indicator of forest disturbance over a large region. Our results suggest the use of carabid beetles as a disturbance indicator at the ecological-type scale (relatively similar soil and forest type) in a given region.


2000 ◽  
Vol 30 (11) ◽  
pp. 1726-1741 ◽  
Author(s):  
Barbara J Cade-Menun ◽  
Shannon M Berch ◽  
Caroline M Preston ◽  
L M Lavkulich

When cedar-hemlock (CH) forests of northern Vancouver Island are clear-cut and replanted, growth of replanted trees is often poor. This growth check can be overcome with nitrogen (N) and phosphorus (P) fertilization, suggesting that it may be because of deficiencies of these elements. A widely used site-preparation tool in these forests is slash burning. Because fire is known to alter nutrient cycling in forests, this burning may be contributing to the problem of poor seedling growth. Thus, the objective of this study was to compare P in forest floor and soils from clear-cut CH stands 10 years, 5 years, and immediately after burning to P concentrations and forms in undisturbed old growth CH stands. Analytical methods included extraction and digestion procedures, fractionation and 31P nuclear magnetic resonance spectroscopy. Soon after burning, an "ashbed effect" was noted, with increased pH and higher concentrations of available P in surface soil horizons. Available P concentrations and pH returned to preburn levels within 10 years. However, destruction of organic matter appeared to disrupt illuviation processes throughout the soil profile, producing long-term changes in organic matter, organic P, and organically complexed Fe and Al in lower mineral horizons. Total P concentrations were unchanged, but there was a shift from organic to inorganic P forms and changes in P forms with time at depth in the profile. These changes in P distribution and movement in the soil may contribute to the growth check observed in these forests.


1993 ◽  
Vol 23 (5) ◽  
pp. 1001-1014 ◽  
Author(s):  
John Yarie

Two mature floodplain white spruce (Piceaglauca (Moench) Voss) ecosystems (stage VIII) located on islands in the Tanana River, approximately 20 km southwest of Fairbanks, Alaska, were clear-cut during the winter of 1985–1986 to quantify the effects of clear-cutting on selected environmental characteristics. Clearings in earlier successional stages (poplar–alder (Populus–Alnus), stage V; and open willow (Salix), stage III) were used to contrast the environmental parameters with the earlier stages found in the primary successional sequence. After clear-cutting, total radiation at the soil surface increased to early successional stage III levels. Potential evaporation from the soil surface increased 5-fold as a result of clearing in the stage VIII sites and was substantially greater than that found in the stage III sites by other researchers. Clearing had relatively little effect on air temperature. The concentration of P and K was significantly lower in the forest floor of both clearcuts, and the concentration of C was significantly higher at VIII-A-T (stage VIII–site A–treated (cleared) plot) when compared with the control stands. There was a decrease in total forest floor biomass at both clear-cut plots. Organic matter, total N, available NH4 and P, and extractable Mg and K all decreased after cutting, whereas pH increased. Decomposition of spruce foliage on the forest floor surface was slower in the clearcuts. Nitrogen immobilization occurred during the first 2 years of decomposition. During the third year it appeared that some mineralization was beginning to occur but the levels were very low, averaging only 3 mg N per bag in the clear-cut areas. Plant growth analysis indicated that growth was limited by high mineral soil salt content in the early successional stages (III) and that this limitation was species specific. Balsam poplar (Populusbalsamifera L.) appears to be more tolerant of the high cation content of the stage III sites compared with trembling aspen (Populustremuloides Michx.). By the time successional development has progressed to stage V, the soil has been sufficiently augmented by the inclusion of organic matter from the developing vegetation and the fixation of N by alder to result in higher seedling growth rates in the cleared areas.


2019 ◽  
Vol 2 ◽  
Author(s):  
Vincent Del Bel Belluz ◽  
David Langor ◽  
Jari Niemelä ◽  
John Spence

We studied how carabid beetle assemblages in lodgepole pine stands have responded after clear-cut harvest and wildfires on an actively managed landscape ~20 km south of Hinton, Alberta, Canada. The work builds on and expands a previous study (Niemela et al. 1993) conducted 23-24 years earlier in many of the same stands sampled in the current study. Carabid species assemblages are compared along a chronosequence of stands ranging in age from 12 to 53 years after clear-cutting. Recovery of carabid assemblages toward pre-harvest structure in regenerating stands, as reflected in the 2013-14 data, appears to have progressed more rapidly than in equivalently aged stands from the earlier study. In addition, carabid species assemblages differed significantly between clear-cut and burned stands of comparable age in 2013-14, with assemblages of burned stands being more similar to the pre-harvest structure than in clear-cut stands. Ground vegetation, mineral soil cover and basal area of trees and shrubs were significantly correlated with structure of carabid species assemblages in young and old regenerating stands, suggesting that environmental and plant successional gradients drive patterns in carabid assemblages. However, assemblage differences between older burned and clear-cut stands indicate that the type of disturbance influences long-term carabid recovery. Relationships between these findings and issues related to conservation of biodiversity and climate change are discussed.


1983 ◽  
Vol 61 (5) ◽  
pp. 970-980 ◽  
Author(s):  
Arthur M. Martell

Changes in small mammal communities following logging were monitored in clear-cut and strip-cut upland black spruce (Picea mariana) stands and in selectively cut mixed wood stands in north-central Ontario. Clear-cutting and subsequent scarification essentially eliminated the vegetative cover. Much of the ground cover recovered within 5 years and shrubs within 12 years, but mosses and lichens took much longer. The small mammal community in both clear-cut and strip-cut stands changed over the first three years after logging from one dominated by southern red-backed voles (Clethrionomys gapperi) to one dominated by deer mice (Peromyscus maniculatus) and then remained relatively stable for up to 13 years after harvest. That shift was not apparent in selectively cut mixed wood stands where the composition of the small mammal community was similar between uncut stands and stands 4–23 years after harvest. There was relatively little change in total numbers of small mammals after logging. In general, the diversity and evenness of small mammals increased or remained stable in the first 1–3 years following harvest, decreased on older (3–16 years) cuts, and then increased to values similar to those in uncut stands on the oldest (19–23 years) cuts.


2016 ◽  
Author(s):  
Tess E Brewer ◽  
Kim M Handley ◽  
Paul Carini ◽  
Jack A Gibert ◽  
Noah Fierer

AbstractAlthough bacteria within theVerrucomicrobiaphylum are pervasive in soils around the world, they are underrepresented in both isolate collections and genomic databases. Here we describe a single verrucomicrobial phylotype within the classSpartobacteriathat is not closely related to any previously described taxa. We examined >1000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in grasslands, where it was typically the most abundant phylotype. We reconstructed a nearly complete genome of this phylotype from a soil metagenome for which we propose the provisional name ‘CandidatusUdaeobacter copiosus’. TheCa. U. copiosus genome is unusually small for soil bacteria, estimated to be only 2.81 Mbp compared to the predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction suggests thatCa. U. copiosus is an aerobic chemoorganoheterotroph with numerous amino acid and vitamin auxotrophies. The large population size, relatively small genome and multiple putative auxotrophies characteristic ofCa. U. copiosus suggests that it may be undergoing streamlining selection to minimize cellular architecture, a phenomenon previously thought to be restricted to aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be successful in soil,Ca. U. copiosus appears to have identified an alternate strategy, sacrificing metabolic versatility for efficiency to become dominant in the soil environment.


2019 ◽  
Vol 11 (4) ◽  
pp. 364
Author(s):  
Marcos Gino Fernandes ◽  
Renata Pires de Araújo ◽  
Eduardo Neves Costa ◽  
Ana Claudia Terumi Abe Zangirolymo ◽  
Rodrigo Matheus Pereira

The first record of transgenic cotton cultivation in Brazil was in 2005, of that of the cultivar MON 531, possessing the cry1Ac gene. Since then, no evaluation has been performed to understand whether the cultivation of Bt cotton has caused any interference with the soil microbiota, including bacteria. In this context, our research was aimed to assess whether the cultivation of Bt cotton negatively affects the community of soil bacteria, through quantitative and metagenomic analyses (marker gene 16S rRNA) for phylum identification. Samples of bacterial populations obtained from the soil cultivated with Bt cotton expressing the Cry1Ac toxin were compared with soil samples from the area cultivated with conventional cotton. Significant differences were not observed in the measure of colony-forming units of bacteria between the soils cultivated with Bt and non-Bt cotton; however, differences were detected only when comparing samples from different collection times of the Bt treatment. Cultivation of Bt cotton did not affect the diversity of the soil bacterial population. Overall, our study shows that, similar to most of the works that have been reported worldwide, cultivation of transgenic cotton does not seem to affect the quantity and diversity of natural soil bacteria.


2013 ◽  
Vol 62 (4) ◽  
pp. 445-452
Author(s):  
IZABELLA PISAREK ◽  
KATARZYNA GRATA

Soil microorganisms play an important role in the organic matter transformation process. The soil microorganisms also are in symbiotic relationship with plants. At the same time, soil microorganisms are sensitive to both anthropogenic and natural habitat changes. Particular characteristics of organic matter (the C:N relation, pH, the content the content of assimilated nutrients, the xenobiotics etc.) modify the biotic conditions of the soils. This particularly concerns the microorganisms which carry out the changes in the mineral and organic nitrogen compounds and the transformation of the external organic matter. The first aim of this work was to assess the influence of the sewage sediments and the manure on the phytosanitary potential of the soil environment. The second aim of this article was to estimate the number and activity of microorganisms which carry out the transformation of carbon and nitrogen compounds. This work showed the stimulating effect of the external organic matter both on the number and on the activity of most of the physiological groups. The manure mainly stimulated ammonificators, amylolitic microorganisms and Azotobacter sp. The sewage sediments mainly stimulated ammonificators, nitrifiers of I phase and cellulolytic microorganisms. The statistically significant impact of the physio-chemical soil habitat on the biological activity of the analyzed groups of microbes was also noted.


Sign in / Sign up

Export Citation Format

Share Document