The characterization and ultrastructure of two new strains of Butyrivibrio

1989 ◽  
Vol 35 (2) ◽  
pp. 274-282 ◽  
Author(s):  
K.-J. Cheng ◽  
R. C. Phillippe ◽  
R. J. C. McLean ◽  
J. W. Costerton

Strains B-385-1 and 2-33 are numerically important components of rumen bacterial populations, but they have remained (taxonomically) undefined. In spite of some resemblance to Selenomonas ruminantium in their cell size and in their formation of tufts of flagella, they more closely resemble Butyrivibrio fibrisolvens in the subpolar location of their flagella, in their guanine + cytosine content, and in most biochemical characteristics, including butyrate formation. Cells of these strains stain Gram negative, as do both Selenomonas and Butyrivibrio, but their cell walls closely resemble those of Butyrivibrio in their Gram-positive type of molecular architecture and in their cleavage pattern in freeze-etching. Cells of these strains and of B. fibrisolvens have a very thin (ca. 12 nm) peptidoglycan cell wall; thus, they fail to retian the crystal violet complex of the Gram stain and stain Gram negative. This important structural characteristic of their cell walls places strains B-385-1 and 2-33 within the genus Butyrivibrio and certain morphological and biochemical characteristics distinguish them from B. fibrisolvens.Key words: Butyrivibrio, characterization, ultrastructure.

Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


1964 ◽  
Vol 20 (2) ◽  
pp. 217-233 ◽  
Author(s):  
G. W. Claus ◽  
L. E. Roth

The morphological features of the cell wall, plasma membrane, protoplasmic constituents, and flagella of Acetobacter suboxydans (ATCC 621) were studied by thin sectioning and negative staining. Thin sections of the cell wall demonstrate an outer membrane and an inner, more homogeneous layer. These observations are consistent with those of isolated, gram-negative cell-wall ghosts and the chemical analyses of gram-negative cell walls. Certain functional attributes of the cell-wall inner layer and the structural comparisons of gram-negative and gram-positive cell walls are considered. The plasma membrane is similar in appearance to the membrane of the cell wall and is occasionally found to be folded into the cytoplasm. Certain features of the protoplasm are described and discussed, including the diffuse states of the chromatinic material that appear to be correlated with the length of the cell and a polar differentiation in the area of expected flagellar attachment. Although the flagella appear hollow in thin sections, negative staining of isolated flagella does not substantiate this finding. Severe physical treatment occasionally produces a localized penetration into the central region of the flagellum, the diameter of which is much smaller then that expected from sections. A possible explanation of this apparent discrepancy is discussed.


1967 ◽  
Vol 105 (2) ◽  
pp. 759-765 ◽  
Author(s):  
K. Clarke ◽  
G. W. Gray ◽  
D. A. Reaveley

1. The insoluble residue and material present in the aqueous layers resulting from treatment of cell walls of Pseudomonas aeruginosa with aqueous phenol were examined. 2. The products (fractions AqI and AqII) isolated from the aqueous layers from the first and second extractions respectively account for approx. 25% and 12% of the cell wall and consist of both lipopolysaccharide and muropeptide. 3. The lipid part of the lipopolysaccharide is qualitatively similar to the corresponding material (lipid A) from other Gram-negative organisms, as is the polysaccharide part. 4. The insoluble residue (fraction R) contains sacculi, which also occur in fraction AqII. On hydrolysis, the sacculi yield glucosamine, muramic acid, alanine, glutamic acid and 2,6-diaminopimelic acid, together with small amounts of lysine, and they are therefore similar to the murein sacculi of other Gram-negative organisms. Fraction R also contains substantial amounts of protein, which differs from that obtained from the phenol layer. 5. The possible association or aggregation of lipopolysaccharide, murein and murein sacculi is discussed.


2003 ◽  
Vol 17 (3) ◽  
pp. 228-233 ◽  
Author(s):  
Cláudio Mendes Pannuti ◽  
Roberto Fraga Moreira Lotufo ◽  
Silvana Cai ◽  
Maria da Conceição Saraiva ◽  
Nívea Maria de Freitas ◽  
...  

A randomized clinical trial was conducted to investigate the effect of a 0.5% chlorhexidine (CHX) gel on dental plaque superinfecting microorganisms in mentally handicapped patients. Thirty inmates from the institution "Casas André Luiz" were assigned to either test group (CHX gel, n = 15) or control group (placebo gel, n = 15). The gel was administered over a period of 8 weeks. Supragingival plaque samples were collected at baseline, after gel use (8 weeks) and 16 weeks after baseline. The presence of Gram-negative Enterobacteriaceae, Staphylococcus and yeasts was evaluated. No significant growth of any superinfecting microorganism was observed in the CHX group, when compared to the placebo group. The results indicated that the 0.5% chlorhexidine gel did not produce an undesirable shift in these bacterial populations.


1968 ◽  
Vol 14 (3) ◽  
pp. 205-210 ◽  
Author(s):  
W. M. Hess

The ultrastructure of P. terrestris hyphal cells was investigated to compare frozen-etched replicas with chemically fixed thin sections. The fungus used in this study uses glycerol as a sole carbon source and survives the freezing procedures necessary for freeze-etching; thus frozen-etched replicas reflect the living state.Frozen-etched membrane systems have particles of various sizes and concentrations and have a smooth appearance as contrasted to chemically fixed membrane systems, which have particles difficult to distinguish and somewhat irregular membrane systems. Frozen-etched cell walls are seen to contain particles, and microfibrillar orientation is evident in older cell walls, whereas substructure is not evident in chemically fixed cell walls, although secretion products of the fungus accumulate on cell surfaces.Chemically fixed ground cytoplasm has ribosomes and areas of high- and low-electron scattering which are not seen with freeze-etching. Cells fixed in glutaraldehyde–acrolein–OsO4 more nearly resemble frozen-etched cells than cells fixed in potassium permanganate.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Romain Mercier ◽  
Yoshikazu Kawai ◽  
Jeff Errington

The peptidoglycan cell wall is a defining structural feature of the bacterial kingdom. Curiously, some bacteria have the ability to switch to a wall-free or ‘L-form’ state. Although known for decades, the general properties of L-forms are poorly understood, largely due to the lack of systematic analysis of L-forms in the molecular biology era. Here we show that inhibition of peptidoglycan precursor synthesis promotes the generation of L-forms from both Gram-positive and Gram-negative bacteria. We show that the L-forms generated have in common a mechanism of proliferation involving membrane blebbing and tubulation, which is dependent on an altered rate of membrane synthesis. Crucially, this mode of proliferation is independent of the essential FtsZ based division machinery. Our results suggest that the L-form mode of proliferation is conserved across the bacterial kingdom, reinforcing the idea that it could have been used in primitive cells, and opening up its use in the generation of synthetic cells.


2020 ◽  
Vol 295 (34) ◽  
pp. 11984-11994 ◽  
Author(s):  
Jean-François Collet ◽  
Seung-Hyun Cho ◽  
Bogdan I. Iorga ◽  
Camille V. Goemans

The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.


1977 ◽  
Vol 79 (2) ◽  
pp. 233-241 ◽  
Author(s):  
K. M. Elhag ◽  
K. A. Bettelheim ◽  
Soad Tabaqchali

SUMMARYUsing direct agglutination methods, a simple serological scheme for the classification ofBacteroides fragilisis described. Twenty strains ofB. fragiliswere selected by a process of successive screening from 151 strains obtained from various sources. O-antigens were prepared from the 20 strains, and used to raise antisera in rabbits.Each of the 20 antisera reacted with its homologous antigen and eight antisera cross-reacted with other subspecies. These cross-reactions were successfully removed after absorption of the antisera with the cross-reacting antigens, resulting in 19 type-specific antisera, titres ranging from 40 to 320, and 19 distinct serotypes ofB. fragilis. There was no correlation between the antigenic and the biochemical characteristics of these strains and no cross-reactions occurred with other gram-negative anaerobes,B. melaninogenicus, Sphaerophorus necrophorusandFuso-bacterium necrogenes.


Sign in / Sign up

Export Citation Format

Share Document