Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins

1991 ◽  
Vol 37 (5) ◽  
pp. 397-403 ◽  
Author(s):  
Hiroshi Kuriyama ◽  
Itaru Umeda ◽  
Harumi Kobayashi

Asexual yeast flocculation was studied using strong flocculents of Saccharomyces cerevisiae. The inhibitory effect of cations on flocculation is considered to be caused by competition between those cations and Ca2+ at the binding site of the Ca2+-requiring protein that is involved in flocculation. Inhibition of flocculation by various cations occurred in the following order: La3+, Sr2+, Ba2+, Mn2+, Al3+, and Na+. Cations such as Mg2+, Co2+, and K+ promoted flocculation. This promoting effect may be based on the reduction of electrostatic repulsive force between cells caused by binding of these cations anionic groups present on the cell surface. In flocculation induced by these cations, trace amounts of Ca2+ excreted on the cell surface may activate the corresponding protein. The ratio of Sr2+/Ca2+ below which cells flocculated varied among strains: for strains having the FLO5 gene, it was 400 to 500; for strains having the FLO1 gene, about 150; and for two alcohol yeast strains, 40 to 50. This suggests that there are several different types of cell surface proteins involved in flocculation in different yeast strains. Key words: yeast, flocculation, protein, cation, calcium.

2002 ◽  
Vol 383 (10) ◽  
pp. 1475-1480 ◽  
Author(s):  
M. Bagnat ◽  
K. Simons

Abstract Cellular membranes contain many types and species of lipids. One of the most important functional consequences of this heterogeneity is the existence of microdomains within the plane of the membrane. Sphingolipid acyl chains have the ability of forming tightly packed platforms together with sterols. These platforms or lipid rafts constitute segregation and sorting devices into which proteins specifically associate. In budding yeast, Saccharomyces cerevisiae, lipid rafts serve as sorting platforms for proteins destined to the cell surface. The segregation capacity of rafts also provides the basis for the polarization of proteins at the cell surface during mating. Here we discuss some recent findings that stress the role of lipid rafts as key players in yeast protein sorting and cell polarity.


1995 ◽  
Vol 310 (1) ◽  
pp. 271-278 ◽  
Author(s):  
L Uhlin-Hansen ◽  
M Yanagishita

Rat ovarian granulosa cells were labelled with [35S]sulphate for 0.5-20 h and chased in the presence or absence of 1-2 micrograms/ml of brefeldin A (BFA) for up to 21 h. Heparan [35S]sulphate (HS) proteoglycans from the culture medium, plasma membrane and intracellular fractions were then analysed by gel chromatography. In the absence of BFA, about 85% of the plasma membrane-associated HS proteoglycans were endocytosed and subsequently degraded intracellularly. Recirculation of the HS proteoglycans between the intracellular pool and the cell surface was not observed. Exposing the cells to BFA for less than 1 h did not influence the turnover of the HS proteoglycans, whereas the effect of the drug on the Golgi functions reached a maximum in approx. 10 min. When the cells were treated with BFA for more than 1-2 h, the rate of endocytosis of HS proteoglycans was reduced to about 50% of the control. The delivery of endocytosed HS proteoglycans to lysosomes were not affected by the drug. Cycloheximide also reduced the endocytosis of HS proteoglycans, but not as much as BFA, indicating that the inhibitory effect of BFA can be only partly accounted for by a block of protein transport from the endoplasmic reticulum to the plasma membrane. In contrast with the endocytosis of HS proteoglycans, neither that of 125I-transferrin, known to be mediated by clathrin-coated vesicles, nor that of 125I-ricin, a marker molecule for bulk endocytosis, was affected by BFA. The half-life of 125I-transferrin and 125I-ricin in the plasma membrane was about 10 and 25 min respectively compared with about 5 h for the HS proteoglycans. Altogether, these results indicate that the endocytosis of plasma-membrane-associated HS proteoglycans is mediated by different mechanisms than the endocytosis of most other cell-surface proteins. Further, the mechanisms involved in the endocytosis of HS proteoglycans are sensitive to BFA.


2011 ◽  
Vol 91 (1) ◽  
pp. 221-264 ◽  
Author(s):  
Dianhua Jiang ◽  
Jiurong Liang ◽  
Paul W. Noble

Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.


2021 ◽  
Author(s):  
Marwan G. AbidAlthagafi

The innate immune system is the first shield against foreign attack inside the human body, and it is usually carried out with phagocytosis. An essential macrophage cell surface protein is the Fc receptor which contributes to the engulfment of unknown antigens. One of the important members of Fc receptors is the gamma receptor that binds to the immunoglobulin G (IgG) ligand. Another key receptor in this study is the CD36 receptor, which plays a crucial role in the progression of atherosclerosis, the hardening of arteries, with its ligand oxidized low-density lipoprotein (OxLDL). In this report, protein tyrosine kinase enzymes have been detected in the involvement of receptor complexes with human U937 macrophages, specifically PTK2 and PTK2b genes. Protein tyrosine kinases were known to promote cell migration as a main player in intracellular signal transduction cascades in relation to extracellular stimuli. Cell surface proteins are essential for the immunization of various diseases; yet, the molecular machinery of surface receptors remains unclear. This research primarily examined the dynamic nature of protein tyrosine kinases in an ongoing investigation of macrophage cell surface receptors, particularly the role of Fc γ and CD36 receptors with their ligands IgG and oxLDL coated beads in phagocytosis. Our report demonstrates a novel role of PTK2 and PTK2b functions in relation to U937 CD36-mediated phagocytosis. The Phagocytic efficiency of U937 macrophages was analyzed using laser scanning confocal microscope after silencing the cells with siRNA followed by quantitative counting of phagocytosis. The PF drug FAK inhibitor was also introduced to compare the phagocytic efficiency of siRNA cells.


2021 ◽  
Author(s):  
Jia Zhao ◽  
Guangyu Jin ◽  
Xudong Liu ◽  
Kai Wu ◽  
Yang Yang ◽  
...  

Abstract BackgroundEsophageal carcinogenesis is a multifactorial process in which genetic and environmental factors interact to activate intracellular signals, leading to the uncontrolled survival and growth of esophageal squamous cell carcinoma (ESCC) cells. The intracellular pathways of ESCC cells could be regulated by proteinase activated-receptors (PARs), which are comprised of four receptors (i.e., PAR-1, PAR-2, PAR-3, and PAR-4). Therefore, the function and possible mechanism of PAR1 and PAR4 in the progression of ECSS were explored.MethodsFirst, we detected the expression levels of PAR1 and PAR4 in 27 cases of ESCC tissue specimens and cell lines by RT-qPCR, IHC and western blot. Meanwhile, the correlation between PAR1/PAR4 expression level, clinicopathological characteristics, and disease free survival were analyzed. Then, we constructed PAR1/PAR4 knockdown cell models and investigated the role of PAR1/PAR4 knockdown on the proliferation, apoptosis, changes of calcium flow, and metastasis of ESCC cell via MTT, flow cytometry, transwell and wound healing assays in vitro. Further, an experimental metastasis model in vivo was established to explore the role of stable PAR1/PAR4 knockdown on the growth and metastasis of ESCC cells. Finally, the role of nSMase2 in the activation of NF-κB induced by PAR4 and the role of NF-κB and STAT3 signaling pathways in the PAR1/PAR4-mediated tumor promoting or suppressive functions were measured by immunoprecipitation, western blot and immunofluorescence.ResultsThe integrated results demonstrated the expression levels of PAR1 and PAR4 are inversely proportional in ESCC. PAR1 could potently enhance tumor growth and metastasis, while PAR4 had an inhibitory effect. Further, the co-activation of STAT3 and NF-κB is involved in the PAR1 activation-induced tumor promoting effect, while only NF-κB participates in the PAR4 activation-induced tumor inhibitory effect in ESCC. To be specific, FAK/PI3K/AKT/STAT3/NF-κB mediated PAR1 activation-induced tumor promoting effect and nSMase2/MAPK/NF-κB mediated PAR4 activation-induced tumor inhibitory effect. ConclusionsOverall, the study provided new insights into the potential implication of PAR1 and PAR4 in the pathogenesis of ESCC. Besides, FAK/PI3K/AKT/STAT3/NF-κB and nSMase2/MAPK/NF-κB pathways may be novel targets for regulating tumor growh and cancer matastasis in ESCC patients.


2018 ◽  
Vol 315 (2) ◽  
pp. C214-C224
Author(s):  
Nandita S. Raikwar ◽  
Masabumi Shibuya ◽  
Christie P. Thomas

Ectodomain shedding and regulated intracellular proteolysis can determine the fate or function of cell surface proteins. Fms-related tyrosine kinase (FLT) or VEGF receptor 1 is a high-affinity cell surface VEGF-A receptor tyrosine kinase that is constitutively cleaved to release an NH2-terminal VEGF-A binding ectodomain that, once shed, can antagonize the effects of VEGF-A in the extracellular milieu. We evaluated the effect of VEGF-A on FLT1 cleavage in native cells and in transient and stable expression systems. We demonstrate that VEGF-A inhibits FLT1 ectodomain cleavage in a time- and dose-dependent manner, whereas VEGF-A knockdown in HEK293 cells increases ectodomain shedding. Although kinase insert domain receptor (KDR) or VEGF receptor 2, analogous to FLT1, is also subject to extracellular and intracellular cleavage, VEGF-A does not inhibit KDR cleavage. VEGF-A inhibition of FLT1 cleavage is not dependent on FLT1 tyrosine kinase activity or the intracellular FLT1 residues. N-acetylleucylleucylnorleucinal (ALLN), a proteasomal inhibitor; bafilomycin A, an inhibitor of endosomal acidification; and dynasore, a dynamin inhibitor, all increase the abundance of FLT1 and the shed ectodomain, indicating that FLT1 is subject to dynamin-mediated endocytosis and susceptible to proteasomal and lysosomal degradation. VEGF-A inhibition of cleavage is not reversed by ALLN, bafilomycin A, or dynasore. However, a 30 AA deletion in the extracellular immunoglobulin 7 domain leads to enhanced cleavage of Flt1 with a significant reduction of the VEGF inhibitory effect. Our results indicate that the inhibition of FLT1 ectodomain cleavage by VEGF-A is dependent neither on receptor activation nor on internalization nor a consequence of receptor degradation and likely represents a direct inhibitory effect on receptor cleavage.


2010 ◽  
Vol 73 (6) ◽  
pp. 1183-1195 ◽  
Author(s):  
María Rosa Insenser ◽  
María Luisa Hernáez ◽  
César Nombela ◽  
María Molina ◽  
Gloria Molero ◽  
...  

2004 ◽  
Vol 287 (3) ◽  
pp. H1344-H1352 ◽  
Author(s):  
Malgorzata Czarny ◽  
Jan E. Schnitzer

Recently, we showed that neutral sphingomyelinase (N-SMase) is concentrated at the endothelial cell surface in caveolae and is activated to produce ceramide in an acute and transient manner by increase in flow rate and pressure in rat lung vasculature (Czarny M, Liu J, Oh P, and Schnitzer JE, J Biol Chem 278: 4424–4430, 2003). Here, we report further on our investigations of this new acute mechanotransduction pathway. We employed three experimental models to explore the role of N-SMase and ceramides in mechanosignaling: 1) a cell-free, in vitro model using isolated luminal plasma membranes of rat lung endothelium; 2) a fluid shear stress model using monolayers of intact bovine aorta endothelial cell in culture; and 3) an in situ model using controlled perfusion of the rat lung vasculature. Scyphostatin, which specifically inhibited N-SMase but not acid SMase activity, prevented mechanoactivation of N-SMase as well as downstream tyrosine and mitogen-activated protein kinases. Cell-permeable ceramide analogs ( N-acetylsphingosine, C2-ceramide, and N-hexanoylsphingosine, C6-ceramide) but not the inactive dihydroderivatives D2-ceramide and D6-ceramide ( N-acetylsphinganine and N-hexanoylsphinganine, respectively) mimic rapid mechano-induced tyrosine phosphorylation of cell surface proteins as well as mechanoactivation of Src-like kinases and the extracellular regulated kinase pathway. The responses common to ceramide and mechanical stress were inhibited by genistein, herbamycin A, and PP2, but not PP3, which suggests an obligate role of Src-like kinases in ceramide-mediated mechanotransduction. Ceramides also induced serine/threonine phosphorylation to activate the Akt/endothelial nitric oxide synthase pathway. Thus N-SMase at the plasma membrane in caveolae may be an upstream initiating mechanosensor, which acutely triggers mechanotransduction by generation of the lipid second messenger ceramide.


1997 ◽  
Vol 324 (2) ◽  
pp. 455-459 ◽  
Author(s):  
Silvia MORA ◽  
Ingrid MONDEN ◽  
Antonio ZORZANO ◽  
Konrad KELLER

To evaluate the role of the small rab GTP-binding proteins in glucose transporter trafficking, we have heterologously co-expressed rab4 or rab5 and GLUT4 or GLUT1 glucose transporters in Xenopus oocytes. Co-injection of rab4 and GLUT4 cRNAs resulted in a dose-dependent decrease in glucose transport; this effect was specific for rab4, since co-injection of an inactive rab4 mutant or rab5 cRNA did not have any effect on glucose transport. The effect of rab4 was selective for GLUT4, since no effect was detected in GLUT1-expressing oocytes. The inhibitory effect of rab4 on GLUT4-induced glucose transport was not the result of a change in overall cellular levels of GLUT4 glucose transporters. However, rab4 expression caused a marked decrease in the abundance of GLUT4 transporters present at the cell surface. Finally, rab4 and inhibitors of PtdIns 3-kinase showed additive effects in decreasing glucose transport in GLUT4-expressing oocytes. We conclude that rab4 plays an important role in the regulation of the intracellular GLUT4 trafficking pathway, by contributing to the intracellular retention of GLUT4 through a PtdIns 3-kinase-independent mechanism.


Sign in / Sign up

Export Citation Format

Share Document