Structural disorder and dynamics of elastinThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process.

2010 ◽  
Vol 88 (2) ◽  
pp. 239-250 ◽  
Author(s):  
Lisa D. Muiznieks ◽  
Anthony S. Weiss ◽  
Fred W. Keeley

Elastin is a self-assembling, extracellular-matrix protein that is the major provider of tissue elasticity. Here we review structural studies of elastin from over four decades, and draw together evidence for solution flexibility and conformational disorder that is inherent in all levels of structural organization. The characterization of disorder is consistent with an entropy-driven mechanism of elastic recoil. We conclude that conformational disorder is a constitutive feature of elastin structure and function.

2002 ◽  
Vol 357 (1418) ◽  
pp. 185-189 ◽  
Author(s):  
F. W. Keeley ◽  
C. M. Bellingham ◽  
K. A. Woodhouse

Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca . 36 domains with alternating hydrophobic and cross–linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross–linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self–organize into fibrillar structures and promote the formation of lysine–derived cross–links. These cross–linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self–organizational ability of elastin–based polypeptides may provide important clues for the general design of self–assembling biomaterials.


1997 ◽  
Vol 16 (5) ◽  
pp. 289-292 ◽  
Author(s):  
Maureen R. Johnson ◽  
Douglas J. Wilkin ◽  
Hans L. Vos ◽  
Rosa Isela Ortiz De Luna ◽  
Anindya M. Dehejia ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (23) ◽  
pp. 5502-5511 ◽  
Author(s):  
Cristina Mazzon ◽  
Achille Anselmo ◽  
Cristiana Soldani ◽  
Javier Cibella ◽  
Cristina Ploia ◽  
...  

Abstract Agrin, an extracellular matrix protein belonging to the heterogeneous family of heparan sulfate proteoglycans (HSPGs), is expressed by cells of the hematopoietic system but its role in leukocyte biology is not yet clear. Here we demonstrate that agrin has a crucial, nonredundant role in myeloid cell development and functions. We have identified lineage-specific alterations that affect maturation, survival and properties of agrin-deficient monocytic cells, and occur at stages later than stem cell precursors. Our data indicate that the cell-autonomous signals delivered by agrin are sensed by macrophages through the α-DC (DG) receptor and lead to the activation of signaling pathways resulting in rearrangements of the actin cytoskeleton during the phagocytic synapse formation and phosphorylation of extracellular signal-regulated kinases (Erk 1/2). Altogether, these data identify agrin as a novel player of innate immunity.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Antonietta Pepe ◽  
Brigida Bochicchio

Elastin is an extracellular matrix protein responsible for the elastic properties of organs and tissues, the elastic properties being conferred to the protein by the presence of elastic fibers. In the perspective of producing tailor-made biomaterials of potential interest in nanotechnology and biotechnology fields, we report a study on an elastin-derived polypeptide. The choice of the polypeptide sequence encoded by exon 6 of Human Tropoelastin Gene is dictated by the peculiar sequence of the polypeptide. As a matter of fact, analogously to elastin, it is constituted of a hydrophobic region (GLGAFPAVTFPGALVPGG) and of a more hydrophilic region rich of lysine and alanine residues (VADAAAAYKAAKA). The role played by the two different regions in triggering the adoption of beta-turn and beta-sheet conformations is herein discussed and demonstrated to be crucial for the self-aggregation properties of the polypeptide.


Parasitology ◽  
1994 ◽  
Vol 109 (5) ◽  
pp. 623-630 ◽  
Author(s):  
L. J. Drake ◽  
A. E. Bianco ◽  
D. A. P. Bundy ◽  
F. Ashall

Excretory/secretory (E/S) material of Trichuris muris was found to contain 2 major peptidases, Mr 85 and 105 kDa, which degrade gelatin optimally at pH 6·0 in sodium dodecyl sulphate–polyacrylamide gels. The peptidases were inactivated diisopropylfluorophosphate, leupeptin and soybean trypsin inhibitor, but were unaffected by inhibitors of aspartic-, cysteine- and metallo-peptidases, indicating that they are serine peptidases. Both enzymes were detectable within 5 h after incubation of worms in culture medium and showed a time-dependent increase in levels. Neither peptidase was detected in worm extracts, suggesting that they are activated during or following secretion from worms. Live worms degraded radio-isotope labelled extracellular matrix protein substratum derived from mammalian cells. Aminopeptidase activities capable of catalysing hydrolysis of amino acyl aminomethylcoumarin (MCA) substrates and a Z-Phe-Arg-MCA-hydrolysing cysteine peptidase activity, were detected in extracts of adult worms but not in E/S material.


1995 ◽  
Vol 35 ◽  
pp. S136
Author(s):  
I. Rawe ◽  
Q. Zhan ◽  
Y. Komai-Hori ◽  
R. Burrows ◽  
C.L. Kublin ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12175
Author(s):  
Suresh Kandasamy ◽  
Kiley Couto ◽  
Justin Thackeray

The Drosophila extracellular matrix protein Dumpy (Dpy) is one of the largest proteins encoded by any animal. One class of dpy mutations produces a characteristic shortening of the wing blade known as oblique (dpyo), due to altered tension in the developing wing. We describe here the characterization of docked (doc), a gene originally named because of an allele producing a truncated wing. We show that doc corresponds to the gene model CG5484, which encodes a homolog of the yeast protein Yif1 and plays a key role in ER to Golgi vesicle transport. Genetic analysis is consistent with a similar role for Doc in vesicle trafficking: docked alleles interact not only with genes encoding the COPII core proteins sec23 and sec13, but also with the SNARE proteins synaptobrevin and syntaxin. Further, we demonstrate that the strong similarity between the doc1 and dpyo wing phenotypes reflects a functional connection between the two genes; we found that various dpy alleles are sensitive to changes in dosage of genes encoding other vesicle transport components such as sec13 and sar1. Doc’s effects on trafficking are not limited to Dpy; for example, reduced doc dosage disturbed Notch pathway signaling during wing blade and vein development. These results suggest a model in which the oblique wing phenotype in doc1 results from reduced transport of wild-type Dumpy protein; by extension, an additional implication is that the dpyo alleles can themselves be explained as hypomorphs.


Author(s):  
Victoria Le ◽  
Hiromi Yanagisawa ◽  
Jessica Wagenseil

Fibulin-5 is an extracellular matrix protein that interacts with other proteins during a complex process that results in elastic fiber formation from the elastin precursor, tropoelastin [1]. Elastic fibers are an important component of tissues requiring elasticity, including large arteries, lungs and skin. In mice lacking fibulin-5 ( Fbln5−/−), these tissues contain disorganized elastic fibers and exhibit decreased elasticity [2]. The phenotype of Fbln5−/− mice is similar to that of humans with cutis laxa, a connective tissue disorder characterized by loose skin and narrow arteries with reduced compliance.


2019 ◽  
Vol 28 (16) ◽  
pp. 2648-2658 ◽  
Author(s):  
John B Rudell ◽  
Ricardo A Maselli ◽  
Vladimir Yarov-Yarovoy ◽  
Michael J Ferns

Abstract Agrin is a large extracellular matrix protein whose isoforms differ in their tissue distribution and function. Motoneuron-derived y+z+ agrin regulates the formation of the neuromuscular junction (NMJ), while y−z− agrin is widely expressed and has diverse functions. Previously we identified a missense mutation (V1727F) in the second laminin globular (LG2) domain of agrin that causes severe congenital myasthenic syndrome. Here, we define pathogenic effects of the agrin V1727F mutation that account for the profound dysfunction of the NMJ. First, by expressing agrin variants in heterologous cells, we show that the V1727F mutation reduces the secretion of y+z+ agrin compared to wild type, whereas it has no effect on the secretion of y−z− agrin. Second, we find that the V1727F mutation significantly impairs binding of y+z+ agrin to both heparin and the low-density lipoprotein receptor-related protein 4 (LRP4) coreceptor. Third, molecular modeling of the LG2 domain suggests that the V1727F mutation primarily disrupts the y splice insert, and consistent with this we find that it partially occludes the contribution of the y splice insert to agrin binding to heparin and LRP4. Together, these findings identify several pathogenic effects of the V1727F mutation that reduce its expression and ability to bind heparan sulfate proteoglycan and LRP4 coreceptors involved in the muscle-specific kinase signaling pathway. These defects primarily impair the function of neural y+z+ agrin and combine to cause a severe CMS phenotype, whereas y−z− agrin function in other tissues appears preserved.


Sign in / Sign up

Export Citation Format

Share Document