THE STERIC FACTOR IN THE HYDROLYSIS OF β-1,4′-OLIGOGLUCOSIDES BY MYROTHECIUM CELLULASE

1956 ◽  
Vol 34 (1) ◽  
pp. 102-115 ◽  
Author(s):  
D. R. Whitaker

A comparison of the rate constants and activation energies for the hydrolysis of cellobiose, cellotriose, cellotetraose, and cellopentaose by Myrothecium cellulase showed that while the rate constant was increased by a factor of about 450 as the degree of polymerization (D.P.) of the substrate was increased from two to five, the activation energy remained at about 12,000 cal. The results are interpreted, in terms of classical collision theory, as indicating that the increase in rate constant with D.P. is determined by an increase in the steric factor with D.P. Addition of a β-linked sorbityl group to an oligoglucoside increased the rate constant; the increase was less than that from addition of an anhydroglucose unit and, relative to the latter, diminished as the D.P. of the chain undergoing addition was increased. Exposing the enzyme to conditions favoring thermal or surface denaturation caused varying losses in enzymic activity towards the four oligoglucosides; wherever the loss in activity towards one oligoglucoside differed substantially from the loss in activity towards any other oligoglucoside, the greater loss was shown towards the substrate of lower D.P. The results are discussed.

1956 ◽  
Vol 34 (1) ◽  
pp. 102-115 ◽  
Author(s):  
D. R. Whitaker

A comparison of the rate constants and activation energies for the hydrolysis of cellobiose, cellotriose, cellotetraose, and cellopentaose by Myrothecium cellulase showed that while the rate constant was increased by a factor of about 450 as the degree of polymerization (D.P.) of the substrate was increased from two to five, the activation energy remained at about 12,000 cal. The results are interpreted, in terms of classical collision theory, as indicating that the increase in rate constant with D.P. is determined by an increase in the steric factor with D.P. Addition of a β-linked sorbityl group to an oligoglucoside increased the rate constant; the increase was less than that from addition of an anhydroglucose unit and, relative to the latter, diminished as the D.P. of the chain undergoing addition was increased. Exposing the enzyme to conditions favoring thermal or surface denaturation caused varying losses in enzymic activity towards the four oligoglucosides; wherever the loss in activity towards one oligoglucoside differed substantially from the loss in activity towards any other oligoglucoside, the greater loss was shown towards the substrate of lower D.P. The results are discussed.


2012 ◽  
Vol 65 (11) ◽  
pp. 1970-1974 ◽  
Author(s):  
C. Y. Kuo ◽  
C. Y. Pai ◽  
C. H. Wu ◽  
M. Y. Jian

This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H2O2 and Na2S2O8; Fe2+, Fe3+, and Co2+ were used to activate these two oxidants. The effects of oxidant concentration (0.3–2 mmol/L) and temperature (25–55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H2O2/Fe2+, UV/H2O2/Fe3+, UV/Na2S2O8/Fe2+ and UV/Na2S2O8/Fe3+ systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.


1979 ◽  
Vol 57 (8) ◽  
pp. 839-845 ◽  
Author(s):  
Alexei M. Afanassiev ◽  
Kiyoshi Okazaki ◽  
Gordon R. Freeman

The rate constants k1 for the reaction of solvated electrons with allyl alcohol in a number of hydroxylic solvents differ by up to two orders of magnitude and decrease in the order tert-butyl alcohol > 2-propanol > 1-propanol ≈ ethanol > methanol ≈ ethylene glycol > water. In methanol and ethylene glycol the rate constants (7 × 107 M−1 s−1 at 298 K) and activation energies (16 kJ/mol) are equal, in spite of a 32-fold difference in solvent viscosity (0.54 and 17.3 cP, respectively) and 3-fold difference in its activation energy (11 and 32 kJ/mol, respectively). The reaction in tert-butyl alcohol is nearly diffusion controlled and has a high activation energy that is characteristic of transport in that liquid (E1 = 31 kJ/mol, Eη = 39 kJ/mol). The activation energies in the other alcohols are all 16 kJ/mol, and it is 14 kJ/mol in water. They do not correlate with transport properties. The solvent effect is connected primarily with the entropy of activation. The rate constants correlate with the solvated electron trap depth. When the electron affinity of the scavenger is small, a favorable configuration of solvent molecules about the electron/scavenger encounter pair is required for the electron jump to take place. The behavior of the rate parameters for propargyl alcohol is similar to that for allyl alcohol, but k1, A1, and E1 are larger for the former. The ratio k(propargyl)/k(allyl) at 298 K equals 10.5 in water and decreases through the series, reaching 1.3 in tert-butyl alcohol. Rate parameters for several other scavengers are also reported.


1942 ◽  
Vol 20b (5) ◽  
pp. 73-81 ◽  
Author(s):  
B. S. Rabinovitch ◽  
C. A. Winkler

The Arrhenius constants have been evaluated for the hydrolysis of formamide, acetamide, propionamide, and benzamide in hydrochloric acid solutions over the concentration range 1 to 10 N. There is approximate correspondence between reaction rates and activation energies for the series of amides. An increase in observed activation energy with increasing acid concentration was found for all amides. The maximum in rate of hydrolysis, which occurs at higher acid concentrations, is discussed and accounted for by the variation in the Arrhenius constants with acid concentration.


1949 ◽  
Vol 27b (8) ◽  
pp. 732-737
Author(s):  
C. A. Winkler ◽  
J. H. Greenblatt

Rate constants for the reaction between nitrogen atoms and ethylene have been obtained by diffusion flame technique over the temperature range 273° to 373 °C. An activation energy of about 3 kcal. has been obtained from the temperature coefficient of these rate constants, and using this value a steric factor of 10−2 has been calculated.


1981 ◽  
Vol 46 (9) ◽  
pp. 2091-2103 ◽  
Author(s):  
Oldřich Pytela ◽  
Petr Svoboda ◽  
Miroslav Večeřa

Solvent dependence of hydrolysis rate constants of 3-acetyl-1,3-diphenyltriazene (I) and 3-(N-methylcarbamoyl)-1,3-diphenyltriazene (II) has been followed in the solvent mixtures ethanol-water, methanol-water, dioxane-water, and formamide-water within the mole fraction x = 0.0 to 0.5 at 25, 35 and 45 °C. A criterion has been suggested, based on sign of change of logarithm of the observed rate constant in dependence on change of the solvent composition, for evaluation of the reaction molecularity and, hence, participation of water in the hydrolysis mechanism. It has been found that water takes part as a proton donor in the transition state of hydrolysis of the substrates studied.


1977 ◽  
Vol 32 (5) ◽  
pp. 496-500
Author(s):  
M. S. Celdrán ◽  
M. V. Ramón ◽  
P. Martínez

Abstract The kinetics of the alkaline hydrolysis of n-butyl acetate have been studied in water and in hydroalcoholic mixtures. The rate constants, activation energies, frequency factors, entropies, Gibbs free energies and enthalpies of activation have been determined. The radii of the activated com­ plexes have been calculated and related to their degree of solvation. A possible reaction mechanism is formulated.


1962 ◽  
Vol 40 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
S. J. Price

The pyrolysis of toluene has been studied in a flow system from 913 to 1143 °K. First-order rate constants are independent of the toluene concentration but decrease approximately 9% when the contact time is reduced from 1.0 to 0.41 second. Increasing the contact time from 1.0 second to 2.07 seconds does not affect the rate constant. The overall rate has been resolved into homogeneous and heterogeneous components. It is suggested that the activation energy of the homogeneous process, 85 kcal/mole, may be associated with D(C6H5CH2—H).


1964 ◽  
Vol 42 (10) ◽  
pp. 2250-2255 ◽  
Author(s):  
D. M. Graham ◽  
R. L. Mieville ◽  
R. H. Pallen ◽  
C. Sivertz

Kinetic studies have been made of the addition of methanethiol to ethylene, propylene, and butene-2. The results obtained are consistent with the mechanism postulated for the isomerization reaction (1). The overall activation energy was found to be negative and could be explained in terms of two competing reactions of the adduct radical: thermal decomposition leading to [Formula: see text] and olefin and dehydrogenation of thiol yielding addition product. Only the ratio of the rate constants for these two reactions could be determined. The method of intermittent illumination was used to evaluate the termination rate constant for the combination of two [Formula: see text] radicals which was found to be (2.5 ± 0.7) × 1010 l mole−1 s−1.


Sign in / Sign up

Export Citation Format

Share Document