A RIBOSOMAL PEPTIDASE FROM ESCHERICHIA COLI B

1965 ◽  
Vol 43 (3) ◽  
pp. 323-329 ◽  
Author(s):  
A. T. Matheson ◽  
C. S. Tsai

Properties of a peptidase present in E. coli ribosomes have been studied. The enzyme is tightly bound to the ribosomes, as indicated by repeated washings and centrifugations, sucrose density gradient centrifugations, and electrophoresis on cellulose acetate. The level of enzyme activity in the 30 S particles is twice that found in the 50 S particles. When the ribosome structure is disrupted by enzymic or chemical means, the peptidase behaves similarly to the bulk of the ribosomal protein.

1976 ◽  
Vol 27 (2) ◽  
pp. 323-333 ◽  
Author(s):  
Ralph Francis DiCamelli ◽  
Elias Balbinder

SUMMARYThe association of α and β2subunits of tryptophan synthetase fromEscherichia coliandSalmonella typhimuriumin homologous and heterologous combinations was studied by sucrose density gradient centri-fugation. Under conditions allowing for optimal association of subunits derived from the same source, subunit association in the mixtureE. coliα–S. typhimuriumβ2was weaker than normal while in the reciprocal combination ofS. typhimuriumα–E. coliβ2it was tighter than normal.These observations suggest that a certain degree of binding between the α and β2subunits of tryptophan synthetase could have had a selective advantage during the evolutionary divergence of the species of Entero-bacteriaceae, so that a mutation leading to the substitution of an amino acid involved in α–β2association in one of the subunits could have been compensated by a mutation in the complementary one.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


1968 ◽  
Vol 12 (2) ◽  
pp. 109-116 ◽  
Author(s):  
A. M. Molina ◽  
L. Calegari ◽  
G. Conte

When an R determinant for streptomycin is transferred into a conditionally streptomycin-dependent E. coli B mutant—which requires in minimal medium either histidine or streptomycin—the latter behaves like a histidineless strain. This phenotype modification shows that the repairing action of streptomycin is prevented. The specific requirement of the strain is not now replaced even by streptomycin concentrations up to 10000 µg/ml at which the conditionally streptomycin-dependent mutant could originally grow, and which are well beyond the resistance level characteristic of the R determinant itself. These data seem to suggest that a reduction in permeability of the cell membrane cannot be held responsible for the phenomenon observed.


2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Birgit Schilling ◽  
Nathan Basisty ◽  
David G. Christensen ◽  
Dylan Sorensen ◽  
James S. Orr ◽  
...  

ABSTRACT Lysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regard to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli. IMPORTANCE Bacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses using a number of different mechanisms. One is lysine acetylation, a posttranslational modification known to target many metabolic enzymes. However, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the amount of sugar did, with more sugar causing more acetylation. These results imply that lysine acetylation is a global regulatory mechanism that is responsive not to the specific carbon source per se but rather to the accumulation of downstream metabolites.


1998 ◽  
Vol 64 (3) ◽  
pp. 1018-1023 ◽  
Author(s):  
I. Tryland ◽  
L. Fiksdal

ABSTRACT Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities ofBacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified asAeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Adi Oron-Gottesman ◽  
Martina Sauert ◽  
Isabella Moll ◽  
Hanna Engelberg-Kulka

ABSTRACT Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA) system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM), composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF)-like element in ribosomal protein bS1 (bacterial S1), apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. IMPORTANCE The genetic code is a universal characteristic of all living organisms. It defines the set of rules by which nucleotide triplets specify which amino acid will be incorporated into a protein. Our results represent the first existing report on a stress-induced bias in the reading of the genetic code. We found that in E. coli , under stress, the amino acid threonine is encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. This is because under stress, MazF generates a stress-induced translation machinery (STM) in which MazF cleaves in-frame ACA sites of the processed mRNAs.


1972 ◽  
Vol 130 (1) ◽  
pp. 55-62 ◽  
Author(s):  
J. Melling ◽  
G. K. Scott

Purified penicillinase, in gram quantities, has been prepared from Escherichia coli strain W3310 by using methods developed to handle large amounts of material. The final product had a specific enzyme activity of 3.08 units/μg of protein, which was over twice as high as that reported previously (Datta & Richmond, 1966). The purified enzyme was similar to that from E. coli strain TEM, but different in molecular weight and some other respects. The differences observed may be a result of the greater purity obtained.


1978 ◽  
Vol 176 (2) ◽  
pp. 569-572 ◽  
Author(s):  
D P Leader ◽  
A A Coia

The acidic ribosomal phosphoprotein, Lgamma, of Krebs II ascites cells was further characterized and compared with proteins L7 and L12 of Escherichia coli. Ribosomal protein Lgamma was selectively removed from 60S sibosomal subunits by 50% ethanol and 1M-NH4Cl, and antibodies raised against protein Lgamma cross-reacted with E. coli protein L12 in immunodiffusion experiments. These and other, previously reported, data support the proposal that the uekaryotic counterpart of E. coli proteins L7 and L12 is phosphorylated.


Sign in / Sign up

Export Citation Format

Share Document