The subcellular localization of testicular sulfogalactoglycerolipid

1980 ◽  
Vol 58 (3) ◽  
pp. 225-229 ◽  
Author(s):  
Abbey Klugerman ◽  
Mary Judith Kornblatt

The subcellular localization of sulfogalactoglycerolipid in rat testicular germinal cells was determined. The sulfolipid of young rats was labelled in vivo with Na235SO4. Rat testis cell suspensions were prepared, homogenized, and centrifuged on linear, continuous, sucrose gradients. The labelled lipid had the identical equilibrium density distribution pattern as alkaline phosphatase, an enzyme of the plasma membrane. The pattern of the sulfolipid was different from the patterns of enzyme markers for the Golgi apparatus, lysosomes, mitochondria, and endoplasmic reticulum. From these results, we conclude that sulfogalactoglycerolipid is located on the plasma membrane of rat testicular germinal cells.

1989 ◽  
Vol 258 (2) ◽  
pp. 541-545 ◽  
Author(s):  
R Reiter ◽  
R Otter ◽  
A Wendel

Selenium (Se)-deficient mice were labelled in vivo with single pulses of [75Se]selenite, and the intrahepatic distribution of the trace element was studied by subcellular fractionation. At 1 h after intraperitoneal injection of 3.3 or 10 micrograms of Se/kg body weight, 15% of the respective doses were found in the liver. Accumulation in the subcellular fractions followed the order: Golgi vesicular much greater than lysosomal greater than cytosolic = microsomal greater than mitochondrial, peroxisomal, nuclear and plasma-membrane fraction. At a dose of 3.3 micrograms/kg, more than 90% of the hepatic Se was protein-bound. When cross-contamination was accounted for, the following specific Se contents of the subcellular compartments were extrapolated: Golgi apparatus, 7.50 pmol/mg; cytosol, 0.90 pmol/mg; endoplasmic reticulum, 0.80 pmol/mg; mitochondria, 0.49 pmol/mg; nuclei, lysosomes, peroxisomes and plasma membrane, less than 0.4 pmol/mg. At 10 micrograms/kg, a roughly 2-3-fold increase in Se content of all fractions was found without major changes in the intrahepatic distribution pattern. An extraordinary rise in the cytosolic fraction was due to an apparently non-protein-bound Se pool. At 24 h after dosing, total hepatic Se had decreased to 6% of the initial dose and had become predominantly protein-bound. The 60% decrease in hepatic Se was reflected in a similar fall in the subcellular levels of the trace element. The Golgi apparatus still had the highest specific Se content, although accumulation was 5 times less than that after 1 h. The cytosolic pool accounted for 50% of the hepatic Se at both labelling times. After 1 h the Golgi apparatus was, with 19%, the second largest intrahepatic pool, followed by the endoplasmic reticulum with 16%. The high affinity and fast response of the Golgi apparatus to Se supplementation of deficient mice is interpreted in terms of a predominant function of this cell compartment in the processing and the export of Se-proteins from the liver.


1979 ◽  
Vol 184 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Joël Quintart ◽  
Jacques Bartholeyns ◽  
Pierre Baudhuin

The specific activity and subcellular distribution of marker enzymes for the main subcellular components were analysed in homogenates of synchronized hepatoma cells (Morris 7288c), obtained by selective detachment at mitosis combined with a metaphase block with Colcemid. Markers for lysosomes, mitochondrial outer membrane, plasma membrane and cytosol are synthesized throughout the cycle at the same rate as the bulk of cellular protein. Larger variations are observed for a Golgi marker; after a decrease around mitosis, the specific activity of galactosyltransferase increases steadily from middle G1-phase on, and at the end of G2-phase it is nearly twice that observed at the beginning of G1-phase. Our results show that synthesis of cytochrome oxidase may occur preferentially in G2-phase. Large modifications of the density distribution of lysosomes are observed during the cell cycle; the median equilibrium density of lysosomal markers decreases in G1-phase, and some increase in soluble activity occurs at the same time. Reverse changes occur progressively during S- and G2-phases. At mitosis, Golgi galactosyltransferase shows a more dispersed distribution, and modifications in the density distribution of endoplasmic-reticulum NADPH–cytochrome c reductase are observed. The latter can be most easily explained by a detachment of ribosomes from endoplasmic-reticulum membranes. No significant modifications occur in mitochondrial and plasma-membrane markers.


1979 ◽  
Vol 180 (3) ◽  
pp. 449-453 ◽  
Author(s):  
M J Smith ◽  
J B Schreiber ◽  
G Wolf

The subcellular distribution of the enzyme catalysing the conversion of retinyl phosphate and GDP-[14C]mannose into [14C]mannosyl retinyl phosphate was determined by using subcellular fractions of rat liver. Purity of fractions, as determined by marker enzymes, was 80% or better. The amount of mannosyl retinyl phosphate formed (pmol/min per mg of protein) for each fraction was: rough endoplasmic reticulum 0.48 +/- 0.09 (mean +/- S.D.); smooth membranes (consisting of 60% smooth endoplasmic reticulum and 40% Golgi apparatus), 0.18 +/- 0.03; Golgi apparatus, 0.13 +/- 0.03; and plasma membrane 0.02.


Author(s):  
James R. Gaylor ◽  
Fredda Schafer ◽  
Robert E. Nordquist

Several theories on the origin of the melanosome exist. These include the Golgi origin theory, in which a tyrosinase-rich protein is "packaged" by the Golgi apparatus, thus forming the early form of the melanosome. A second theory postulates a mitochondrial origin of melanosomes. Its author contends that the melanosome is a modified mitochondria which acquires melanin during its development. A third theory states that a pre-melanosome is formed in the smooth or rough endoplasmic reticulum. Protein aggregation is suggested by one author as a possible source of the melanosome. This fourth theory postulates that the melanosome originates when the protein products of several genetic loci aggregate in the cytoplasm of the melanocyte. It is this protein matrix on which the melanin is deposited. It was with these theories in mind that this project was undertaken.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


1978 ◽  
Vol 174 (2) ◽  
pp. 435-446 ◽  
Author(s):  
T J Peters ◽  
C A Seymour

1. Fragments (2-20 mg wet wt.) of closed needle-biopsy specimens from human liver were disrupted in iso-osmotic sucrose and subjected to low-speed centrifugation. The supernatant was layered on a linear sucrose-density gradient in the Beaufay small-volume automatic zonal rotor. The following organelles, with equilibrium densities (g/ml) and principal marker enzyme shown in parentheses, were resolved: plasma membrane (1.12-1.14; 5′-nucleotidase); lysosomes (1.15-1.20; N-acetyl-beta-glucosaminidase); mitochondria (1.20; malate dehydrogenase); endoplasmic reticulum (1.17-1.21; neutral alpha-glucosidase); peroxisomes (1.22-1.24; catalase). 2. The distribution of particulate alkaline phosphatase and, to a lesser degree, leucine 2-naphthylamidase followed that of 5′-nucleotidase. gamma-Glutamyltransferase was associated with membranes of significantly higher equilibrium density than was 5′-nucleotidase. 3. The distribution of 12 acid hydrolases was determined in the density-gradient fractions. beta-Glucosidase had a predominantly cytosolic localization, but the other enzymes showed a broad distribution of activity throughout the gradient. Evidence was presented for two populations of lysosomes with equilibrium densities of 1.15 and 1.20 g/ml, but containing differing amounts of each enzyme. Further evidence of lysosomal heterogeneity was demonstrated by studying the distribution of isoenzymes of hexosaminidase and of acid phosphatase. 4. The resolving power of the centrifugation procedure can be further enhanced with membrane perturbants. Digitonin (0.12 mM) selectively disrupted lysosomes, markedly increased the equilibrium density of plasma-membrane components and lowered the density of the endoplasmic reticulum, but did not affect the mitochondria or peroxisomes. Pyrophosphate (15 mM) selectively lowered the equilibrium density of the endoplasmic reticulum.


2016 ◽  
Author(s):  
Yushu Chen ◽  
Shashank Bharill ◽  
Zeynep Altun ◽  
Robert O'Hagan ◽  
Brian Coblitz ◽  
...  

Caenorhabditis eleganssenses gentle touch via a mechanotransduction channel formed from the DEG/ENaC proteins MEC-4 and MEC-10. An additional protein, the paraoxonase-like protein MEC-6, is essential for transduction, and previous work suggested that MEC-6 was part of the transduction complex. We found that MEC-6 and a similar protein, POML-1, reside primarily in the endoplasmic reticulum and do not colocalize with MEC-4 on the plasma membrane in vivo. As with MEC-6, POML-1 is needed for touch sensitivity, for the neurodegeneration caused by themec-4(d)mutation, and for the expression and distribution of MEC-4 in vivo. Both proteins are likely needed for the proper folding or assembly of MEC-4 channels in vivo as measured by FRET. MEC-6 detectably increases the rate of MEC-4 accumulation on theXenopusoocyte plasma membrane. These results suggest that MEC-6 and POML-1 interact with MEC-4 to facilitate expression and localization of MEC-4 on the cell surface. Thus, MEC-6 and POML-1 act more like chaperones for MEC-4 than channel components.


1970 ◽  
Vol 44 (3) ◽  
pp. 492-500 ◽  
Author(s):  
R. D. Cheetham ◽  
D. James Morré ◽  
Wayne N. Yunghans

Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.


Sign in / Sign up

Export Citation Format

Share Document