Cotranslational folding of nascent proteins on Escherichia coli ribosomes

1995 ◽  
Vol 73 (11-12) ◽  
pp. 1199-1207 ◽  
Author(s):  
Boyd Hardesty ◽  
Wieslaw Kudlicki ◽  
O. W. Odom ◽  
Tong Zhang ◽  
Diane McCarthy ◽  
...  

Evidence is presented for cotranslational folding of rhodanese or ricin during its synthesis on Escherichia coli ribosomes. During transcription–translation, full-length but enzymatically inactive polypeptides accumulated as peptidyl-tRNA on the ribosomes. These polypeptides were activated and released by subsequent incubation with the bacterial chaperones and with release factor (RF-2). Coumarin was incorporated cotranslationally at the N-terminus of the nascent protein from fluorophore-S-Ac-Met-tRNAf. Changes in fluorescence indicated that DnaJ bound to the nascent proteins and to a fluorescently labeled synthetic peptide corresponding to the N-terminal 17 amino acids of bovine rhodanese. This peptide also bound to 70S ribosomes or 50S subunits but not to 30S subunits. It inhibited activation and RF-2-dependent release of the full-length ribosome-bound rhodanese. A deletion mutant of rhodanese lacking the N-terminal 23 amino acids was not accumulated on the ribosome but was synthesized very efficiently. However, the protein that was formed was enzymatically inactive. DnaJ did not bind to this deletion mutant on ribosomes. We conclude that the chaperone-mediated reactions facilitate binding of the N-terminal sequence of nascent proteins to a specific site on 50S ribosomal subunits where it blocks release. The ribosome-bound protein undergoes chaperone-mediated reactions that are required for folding into an enzymatically active conformation.Key words: protein synthesis, ribosome, chaperone, protein folding, nascent peptide.

2005 ◽  
Vol 187 (11) ◽  
pp. 3643-3649 ◽  
Author(s):  
Tsuyoshi Uehara ◽  
Kyoko Suefuji ◽  
Noelia Valbuena ◽  
Brian Meehan ◽  
Michael Donegan ◽  
...  

ABSTRACT Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is first phosphorylated by anhydro- N -acetylmuramic acid kinase (AnmK), yielding MurNAc-P, and this is followed by action of an etherase which cleaves the bond between d-lactic acid and the N-acetylglucosamine moiety of MurNAc-P, yielding GlcNAc-P. The kinase gene has been identified by a reverse genetics method. The enzyme was overexpressed, purified, and characterized. The cell extract of an anmK deletion mutant totally lacked activity on anhMurNAc. Surprisingly, in the anmK mutant, anhMurNAc did not accumulate in the cytoplasm but instead was found in the medium, indicating that there was rapid efflux of free anhMurNAc.


Author(s):  
Niranjan Koirala

A sterol glycosyltransferases (SGT) gene (sav7185; accession number NP_828361) was isolated from Streptomyces avermitilis MA-4680. The full-length gene consists of 1284 nucleotides and encodes 427 amino acids with a calculated mass of 46.05 kDa. The gene was then cloned in pET28a vector and heterologously expressed in Escherichia coli BL21 (DE3) and was used for the biotransformation of cholesterol. This SGT protein showed favorable activity towards cholesterol tested in this study. Further, we tested the conversion of cholesterol to its methoxide using another Streptomyces O-methyltransferase (accession number KF420279). This O-methyltransferase (OMT) SpOMT2884, originating from Streptomyces peucetius ATCC 27952, was cloned, expressed, and applied for the production of methylated derivative. The GC-MS analysis confirmed the conversion of cholesterol into cholesterol-3-O-β-D-glucoside and a novel cholesterol-3-O-methoxide. Hence, these Streptomyces SGT and OMT could find applications for the derivatization of pharmaceutically significant sterols.


1973 ◽  
Vol 136 (4) ◽  
pp. 859-863 ◽  
Author(s):  
Michael Cannon ◽  
M. Amin A. Mirza ◽  
Margaret L. M. Anderson

1. Crude extracts of Escherichia coli were used to synthesize nascent peptides under the direction of endogenous mRNA and in the presence of radioactive amino acids. Analysis of such extracts by sucrose-gradient centrifugation in low Mg2+concentration has shown that after 2min of incubation approximately 14% of the total labelled protein recovered on the gradient, in association with whole ribosomes, sediments with 30S ribosomal subunits; this value rises to approximately 24% after 30min of incubation. The labelled protein associated with 30S ribosomal subunits is insoluble in hot trichloroacetic acid. 2. Similar results were also obtained in extracts that synthesized polypeptides under the direction of either of the synthetic polyribonucleotides poly(A) or poly(A,G,C,U). In contrast, however, analysis of crude extracts programmed in protein synthesis by poly(U) has indicated that under these conditions 30S ribosomal subunits have no associated polyphenylalanine; similarly there is little associated peptide after programming of extracts by poly(U,C).


2004 ◽  
Vol 186 (21) ◽  
pp. 7273-7279 ◽  
Author(s):  
Tsuyoshi Uehara ◽  
James T. Park

ABSTRACT N-Acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell wall murein and the lipopolysaccharide of the outer membrane. During growth, over 60% of the murein of the side wall is degraded, and the major products, GlcNAc-anhydro-N-acetylmuramyl peptides, are efficiently imported into the cytoplasm and cleaved to release GlcNAc, anhydro-N-acetylmuramic acid, murein tripeptide (l-Ala-d-Glu-meso-diaminopimelic acid), and d-alanine. Like murein tripeptide, GlcNAc is readily recycled, and this process was thought to involve phosphorylation, since GlcNAc-6-phosphate (GlcNAc-6-P) is efficiently used to synthesize murein or lipopolysaccharide or can be metabolized by glycolysis. Since the gene for GlcNAc kinase had not been identified, in this work we purified GlcNAc kinase (NagK) from Escherichia coli cell extracts and identified the gene by determining the N-terminal sequence of the purified kinase. A nagK deletion mutant lacked phosphorylated GlcNAc in its cytoplasm, and the cell extract of the mutant did not phosphorylate GlcNAc, indicating that NagK is the only GlcNAc kinase expressed in E. coli. Unexpectedly, GlcNAc did not accumulate in a nagK nagEBACD mutant, though both GlcNAc and GlcNAc-6-P accumulate in the nagEBACD mutant, suggesting the existence of an alternative pathway (presumably repressed by GlcNAc-6-P) that reutilizes GlcNAc without the involvement of NagK.


2021 ◽  
Author(s):  
Jessica G. Perez ◽  
Erik D. Carlson ◽  
Oliver Weisser ◽  
Camila Kofman ◽  
Kosuke Seki ◽  
...  

AbstractA genomically recoded Escherichia coli strain that lacks all amber codons and release factor 1 (C321.ΔA) enables efficient genetic encoding of chemically diverse, non-canonical amino acids (ncAAs) into proteins. While C321.ΔA has opened new opportunities in chemical and synthetic biology, this strain has not been optimized for protein production, limiting its utility in widespread industrial and academic applications. To address this limitation, we describe the construction of a series of genomically recoded organisms that are optimized for cellular protein production. We demonstrate that the functional deactivation of nucleases (e.g., rne, endA) and proteases (e.g., lon) increases production of wild-type superfolder green fluorescent protein (sfGFP) and sfGFP containing two ncAAs up to ∼5-fold. Additionally, we introduce a genomic IPTG-inducible T7 RNA polymerase (T7RNAP) cassette into these strains. Using an optimized platform, we demonstrated the ability to introduce 2 identical N6-(propargyloxycarbonyl)-L-Lysine residues site specifically into sfGFP with a 17-fold improvement in production relative to the parent. We envision that our library of organisms will provide the community with multiple options for increased expression of proteins with new and diverse chemistries.


1973 ◽  
Vol 136 (4) ◽  
pp. 865-869
Author(s):  
M. Amin A. Mirza ◽  
Michael Cannon ◽  
Margaret L. M. Anderson

1. Crude extracts of Escherichia coli programmed in protein synthesis by endogenous mRNA have incorporated amino acids into protein. Analysis of such extracts by sucrose-gradient centrifugation in low Mg2+concentration has revealed that 30S ribosomal subunits carry associated radioactive material of which a considerable proportion can be removed from ribosomes by treatment of pre-labelled extracts with puromycin. 2. Gradient analyses of incorporations carried out in the additional presence of added32P-labelled tRNA have indicated that tRNA sediments in the regions of the newly synthesized nascent protein and that both labels are associated with all ribosomal components detected on the gradients under the experimental conditions employed. 3. 30S ribosomal subunits carrying both32P and14C labels have been isolated, disrupted with sodium dodecyl sulphate, and analysed by chromatography on Sephadex G-200 columns. Both labels elute closely together and well away from a tRNA marker analysed under identical conditions. 4. It is proposed that 30S ribosomal subunits, isolated from extracts which have synthesized nascent peptides under the direction of endogenous mRNA, carry associated peptidyl-tRNA.


1948 ◽  
Vol 174 (2) ◽  
pp. 391-398
Author(s):  
Yutaka. Kobayashi ◽  
Marguerite. Fling ◽  
Sidney W. Fox

Sign in / Sign up

Export Citation Format

Share Document