Constitutive expression of the E2F1 transcription factor in fibroblasts alters G0 and S phase transit following serum stimulation

1996 ◽  
Vol 74 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Thomas J. Logan ◽  
Kelly L. Jordan ◽  
David J. Hall

The E2F1 transcription factor was constitutively expressed in NIH3T3 fibroblasts to determine its effect on the cell cycle. These E2F1 cell lines were not tightly synchronized in G0 phase of the cell cycle following serum starvation, as are normal fibroblasts. Instead, the cells are spread throughout G0 and G1 phase with a portion of the population initiating DNA synthesis. Upon serum stimulation, the remaining cells in G0/G1 begin to enter S phase immediately but with a reduced rate. Constitutive expression of E2F1 appears to primarily affect the G0 phase, since transit of proliferating E2F1 cell lines through G1 phase is the same as control cells. Consistent with a shortened G0 phase, the E2F1 cell lines have a significantly reduced cellular volume. Additionally, the first S phase after serum stimulation, but not subsequent S phases, is nearly doubled in the E2F1 cell lines compared with control cells. Cell lines expressing a deletion mutant of E2F1 (termed E2F1d87), known to significantly affect cell shape, have cell cycle and volume characteristics similar to the E2F1 expressing cells. However, all S phase durations are considerably lengthened and the cells demonstrate delayed growth after plating.Key words: cell cycle, E2F1 transcription factor, G0/G1 phase.

1996 ◽  
Vol 183 (3) ◽  
pp. 1205-1213 ◽  
Author(s):  
R C Bargou ◽  
C Wagener ◽  
K Bommert ◽  
W Arnold ◽  
P T Daniel ◽  
...  

The transcription factor E2F is regulated during the cell cycle through interactions with the product of the retinoblastoma susceptibility gene and related proteins. It is thought that E2F-mediated gene regulation at the G1/S boundary and during S phase may be one of the rate-limiting steps in cell proliferation. It was reported that in vivo overexpression of E2F-1 in fibroblasts induces S phase entry and leads to apoptosis. This observation suggests that E2F plays a role in both cell cycle regulation and apoptosis. To further understand the role of E2F in cell cycle progression, cell death, and tumor development, we have blocked endogenous E2F activity in HBL-100 cells, derived from nonmalignant human breast epithelium, using dominant-negative mutants under the control of a tetracycline-dependent expression system. We have shown here that induction of dominant-negative mutants led to strong downregulation of transiently transfected E2F-dependent chloramphenicol acetyl transferase reporter constructs and of endogenous c-myc, which has been described as a target gene of the transcription factor E2F/DP. In addition, we have shown that blocking of E2F could efficiently protect from apoptosis induced by serum starvation within a period of 10 d, whereas control cells started to die after 24 h. Surprisingly, blocking of E2F did not alter the rate of proliferation or of DNA synthesis of these cells; this finding indicates that cell-cycle progression could be driven in an E2F-independent manner. In addition, we have been able to show that blocking of endogenous E2F in HBL-100 cells led to rapid induction of tumor growth in severe combined immunodeficiency mice. No tumor growth could be observed in mice that received mock-transfected clones or tetracycline to block expression of the E2F mutant constructs in vivo. Thus, it appears that E2F has a potential tumor-suppressive function under certain circumstances. Furthermore, we provide evidence that dysregulation of apoptosis may be an important step in tumorigenesis.


2008 ◽  
Vol 415 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Katherine A. Kaproth-Joslin ◽  
Xiangquan Li ◽  
Sarah E. Reks ◽  
Grant G. Kelley

In the present study, we examined the role of PLCδ1 (phospholipase C δ1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLCδ1, but not PLCβ3 or PLCϵ, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [3H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G0/G1-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G1-phase but delayed entry into S-phase. Consistent with these findings, G1 cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G1-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E–CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLCδ1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLCδ1 in cell-cycle progression from G1-to-S-phase through regulation of cyclin E–CDK2 activity and p27 levels.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 105-113
Author(s):  
CW Distelhorst ◽  
BM Benutto ◽  
RA Bergamini

We determined the effect of cell cycle position on the amount of dexamethasone that was specifically bound by mouse and human lymphoid cell lines. Cell lines that were either sensitive or resistant to growth inhibition by dexamethasone were compared. Exponentially growing cells were separated by centrifugal elutriation into fractions that corresponded to different positions in the cell cycle. The cell cycle phase distribution of each fraction was estimated by flow cytometry and autoradiography. The amount of dexamethasone bound per cell in each fraction was measured by a whole cell binding assay. In three dexamethasone-sensitive cell lines (two mouse and one human), we found that the amount of dexamethasone bound per cell increased 2–4-fold between G1 phase and S phase, and then decreased during G2/M phase. Results were the same when the amount of dexamethasone bound per milligram of cell protein was measured. Binding affinity was the same during G1 phase and S phase, but the proportion of bound dexamethasone that translocated to the nucleus was greater during S phase. In contrast, we found that the amount of dexamethasone bound per cell by three dexamethasone-resistant cell lines (two mouse and one human) did not increase during S phase. Our results indicate that cell cycle changes in dexamethasone binding are not simply related to changes in cell protein or cell volume during the cell cycle. An increase in dexamethasone binding during S phase may be required for dexamethasone to inhibit cell growth, and a failure of dexamethasone binding to increase during S phase might represent a new mechanism of dexamethasone resistance in lymphoid cells.


2020 ◽  
Author(s):  
Samah A. Jassam ◽  
Zaynah Maherally ◽  
Paraskevi Chairta ◽  
Geoffrey J. Pilkington ◽  
Helen L. Fillmore

AbstractOverexpression of the tetrasaccharide carbohydrate epitopes, CD15 and CD15s are associated with non-central nervous system malignancies. While CD15 and CD15s expression is rare in gliomas, recent reports suggest that CD15 may serve as a marker for brain tumour ‘stem-like’ cells. The aim of this study was to determine if this apparent discrepancy may, in part, be explained by temporal expression of CD15 and CD15s at different phases of the cell cycle. We used flow cytometry, immunocytochemistry and a fluorescence cell cycle indicator (FUCCI) system to examine expression in glioblastoma (GBM) cells (UP-007 and SNB-19) and non-neoplastic astrocytes (SC-1800) synchronised via serum starvation, Hydroxyurea and Nocodazole, respectively. CD15 and CD15s expression was significantly increased in glioma cells synchronised to G1 phase compared with non-synchronised cells (p<0.001). This was supported by qualitative results obtained with the (FUCCI) system. Few studies have considered the possibility of cell-cycle dependent CD15 and CD15s expression which may explain the inconsistencies reported in the literature in terms of expression in ‘glioma stem-like cells’ where cells are more likely in S phase where CD15 and CD15s expression would be low.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 105-113 ◽  
Author(s):  
CW Distelhorst ◽  
BM Benutto ◽  
RA Bergamini

Abstract We determined the effect of cell cycle position on the amount of dexamethasone that was specifically bound by mouse and human lymphoid cell lines. Cell lines that were either sensitive or resistant to growth inhibition by dexamethasone were compared. Exponentially growing cells were separated by centrifugal elutriation into fractions that corresponded to different positions in the cell cycle. The cell cycle phase distribution of each fraction was estimated by flow cytometry and autoradiography. The amount of dexamethasone bound per cell in each fraction was measured by a whole cell binding assay. In three dexamethasone-sensitive cell lines (two mouse and one human), we found that the amount of dexamethasone bound per cell increased 2–4-fold between G1 phase and S phase, and then decreased during G2/M phase. Results were the same when the amount of dexamethasone bound per milligram of cell protein was measured. Binding affinity was the same during G1 phase and S phase, but the proportion of bound dexamethasone that translocated to the nucleus was greater during S phase. In contrast, we found that the amount of dexamethasone bound per cell by three dexamethasone-resistant cell lines (two mouse and one human) did not increase during S phase. Our results indicate that cell cycle changes in dexamethasone binding are not simply related to changes in cell protein or cell volume during the cell cycle. An increase in dexamethasone binding during S phase may be required for dexamethasone to inhibit cell growth, and a failure of dexamethasone binding to increase during S phase might represent a new mechanism of dexamethasone resistance in lymphoid cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2184-2184 ◽  
Author(s):  
Rina Nagao ◽  
Eishi Ashihara ◽  
Shinya Kimura ◽  
Hisayuki Yao ◽  
Miki Takeuchi ◽  
...  

Abstract Abstract 2184 Poster Board II-161 Imatinib has dramatically improved the management of CML, but cases of imatinib resistance have been reported. The second-generation ABL tyrosine kinase inhibitors (TKIs) such as dasatinib and nilotinib overcome imatinib-resistant CML.These agents, however, are ineffective in CML cells harboring T315I mutation and in CML stem cells. Recently, loss of β-catenin has been reported to impair the renewal of CML stem cells (Chao et al, Cancer Cell 2007) and an in vivo study has showed that β-catenin is essential for survival of leukemic stem cells (Hu et al, Leukemia 2009). Thus, we hypothesized that the inhibition of β-catenin signaling may be efficacious in the treatment of CML. We have previously reported that a novel β-catenin inhibitor, AV65, suppresses the growth of imatinib resistant CML cell lines harboring Abl kinase domain mutations including T315I and hypoxia-adaptation (Nagao et al, ASH 2008). We herein examine the cell cycle and apoptotic effects of AV65 on CML cell lines and its therapeutic possibility for CML stem/progenitor cells. We observed that expression of β-catenin is increased 20 to 45-fold in K562, BV173, KT-1, and MYL CML cell lines compared with total bone marrow cells from healthy volunteers. We have previously demonstrated that AV65 induced apoptosis of CML cells. To investigate how AV65 inhibits β-catenin, we next analyzed the effects of AV65 using Western blotting and real time PCR. AV65 suppressed the expression of β-catenin in K562 in a time- and a dose-dependent manner in nuclear and cytosolic fractions as well as whole cell lysates. AV65 did not diminish the transcripts of β-catenin in K562 indicating the depletion of β-catenin due to an inhibition of its accumulation in CML cells. Next we examined the effects of AV65 on cell cycle. The fractions of G1 phase to S phase increased by AV65 treatment. TUNEL/PI staining showed that both K562 and BV173 began to be nicked by AV65 at 30 nM for 12 hours, resulting in the induciton of apoptosis from G1 phase to S phase 24 hours after AV65 treatment (Figure). In real-time PCR analysis, the transcripts of p21, p27, and p57 in CML cell lines increased by AV65 treatment, however, those of p53 were not altered. Taken together, it is suggested that CML cells first arrested from G1 phase to S phase and then induced apoptosis after AV65 treatment. Next we examined the mechanisms of apoptosis by AV65 treatment. AV65 treatment in the presence of Z-VAD did not induce cell death in BV173, indicating that AV65 induced caspase-dependent apoptosis in BV173. In K562 cells however, AV65 induced apoptosis with or without Z-VAD suggesting that AV65 induces apoptosis in CML cell lines in caspase-dependent or -independent pathways. Lastly, we investigated the effects on hypoxia-adapted CML cells. We established hypoxia-adapted K562 cell lines (K562/HA). This cell line shows characteristics of more primitive CML cells, including resistance to serial Abl TKIs and a higher transplantation efficacy compared to the parental K562 cells (Takeuchi, et al. ASH 2008). In Western blotting analysis, K562/HA cell line expressed more β-catenin than its parental K562 cell line. AV65 inhibited the growth of K562/HA at the similar concentration to K562. Taken together, AV65 is effective for primitive CML cells which overexpress β-catenin. This suggests that AV65 has a potential to eradicate CML stem/progenitor cells. In conclusion, AV65 inhibits the accumulation of β-catenin in CML cells and this causes cell cycle arrest from G1 to S phase, resulting in induction of caspase-independent or -dependent apoptosis in CML cells. The inhibition of Wnt/β-catenin signaling has great potential as a novel and attractive therapy for CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5124-5124
Author(s):  
Luca Fischer ◽  
Andrea Schnaiter ◽  
Bianca Freysoldt ◽  
Markus Irger ◽  
Yvonne Zimmermann ◽  
...  

Abstract Introduction: Mantle cell lymphoma (MCL) is characterized by t(11;14) resulting in a constitutive cyclin D1 overexpression. The cyclin D1-CDK4/6 complex inactivates Rb through phosphorylation, leading to G1/S-phase transition. Therefore, inhibition of CDK4/6 is an efficient and rational approach to overcome cell cycle dysregulation in MCL. We evaluated the efficiency of the novel CDK4/6 inhibitor abemaciclib in various MCL cell lines and in primary MCL cells in combination with cytarabine (AraC) and ibrutinib. Material & Methods: MCL cell lines (Granta 519, JeKo-1, Maver-1, Mino) and primary MCL cells were exposed to abemaciclib alone and combined with AraC or ibrutinib. Cells were pretreated with abemaciclib and exposed to AraC or ibrutinib with or without consecutive wash-out of the CDK4/6 inhibitor. Proliferation and viability were measured by tryptan blue staining and Cell Titer Glo assay. Flow cytometry was used for cell-cycle (PI-staining) and apoptosis analysis (Annexin V PE/7AAD-staining). Western Blot analysis showed protein expression and phosphorylation status of various downstream proteins. Results: Abemaciclib inhibited cell proliferation by induction of early G1-arrest. Western Blot analysis revealed reduced phosphorylation of Rb on serine 795 without changes in CDK 4 and cyclin D1 expression, in line with reversible cell cycle arrest. IC50-values of sensitive cell lines (JeKo-1, Maver-1, Mino) were <30 nM after 72 h. We observed an almost complete and reversible G1-arrest in all sensitive cell lines by FACS analysis (JeKo-1: G1-phase +51,7 %; S/G2-phase -51,7 % at 31,25 nM after 24 h; G1-phase +35,4 %; S/G2-phase -34,8 % after 72 h), whereas cell viability was not reduced. Wash-out of abemaciclib after 24 h resulted in synchronized S-phase entry in all sensitive cell lines (e.g. Mino: G1-phase -20,4 %; S-phase +30,5 %). The sequential combination of abemaciclib followed by AraC showed strong synergy in Mino cells (CI=0,22 for 31,25 nM abemaciclib and 3,33 µM cytarabine). In contrast, simultaneous exposure to abemaciclib had a protective effect against AraC treatment in all sensitive cell lines, due to an ongoing G1-arrest (Mino: CI=-0,19 for 31,25 nM abemaciclib and 3,33 µM AraC). In primary MCL cells, 31,25 nM of abemaciclib had no impact on cell death. Moreover, no sensitization to AraC was observed as all cells were resting in G0-phase. The combination of abemaciclib induced G1 arrest and ibrutinib had additive or synergistic effects in sensitive cell lines (JeKo-1, Mino and Maver). Conclusion: The novel CDK4/6 inhibitor abemaciclib causes reversible G1 cell cycle arrest without loss of viability at low nanomolar doses. Rationale drug combinations exploiting the sequential effect may achieve major benefits, but drug interactions are complex: Pretreatment with abemaciclib sensitizes MCL cell line cells to AraC whereas simultaneous application protects them from AraC treatment. Further analyses explore the interaction with other targeted approaches (inhibitors of the B-cell receptor pathway) to better understand the underlying molecular mechanisms. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 18 (5) ◽  
pp. 739-746 ◽  
Author(s):  
Raj Kaushal ◽  
Nitesh Kumar ◽  
Archana Thakur ◽  
Kiran Nehra ◽  
Pamita Awasthi ◽  
...  

Abstract: Background: After the discovery of cisplatin, first non platinum anticancer drugs having excellent efficacy were budotitane and TiCl2(cp)2 but action mechanism is not clear. Therefore, we hereby reporting synthesis and biological activities novel titanium complexes to explore their mode of action. Objectives: Synthesis, spectral characterization, antibacterial and anticancer activity of some titanium complexes. Antibacterial studies on various bacterial strains and anticancer studies on HeLa, C6, CHO cancerous cell lines have been performed. Further, the cell death mechanistic study was done on CHO cell lines. Method: Titanium complexes with and without labile groups have been synthesized by reacting of TiCl4 with nitrogen containing ligands viz. 1,2-diaminocyclohexane, 1,10-Phenanthroline, adamantylamine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine in predetermined molar ratios. Antibacterial and anticancer studies were performed by agar well diffusion method and MTT assay respectively. Cell cycle analysis is done by using flow cytometry. Results: Complex 2 i.e TiCl2(Phen)2 showed better activity than other complexes as an antibacterial as well as anticancer agent. Phase contrast imaging indicates that observed morphological changes of cells was dose dependent. Cell death mechanistic study have shown the increase in sub G0 phase population as well as formation of blebbing and fragmentation of chromatin material which is an indicative measure of apoptosis. Conclusion: Complex 2 proved to be more effective bactericide and cytotoxic agent. Cell cycle analysis showed cell arrest in G0 phase. Apoptosis percentage was found to increase in a dose dependent manner. So, prepared titanium complexes can be put to use as an important chemotherapeutic agents.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Michela Levi ◽  
Roberta Salaroli ◽  
Federico Parenti ◽  
Raffaella De Maria ◽  
Augusta Zannoni ◽  
...  

Abstract Background Doxorubicin (DOX) is widely used in both human and veterinary oncology although the onset of multidrug resistance (MDR) in neoplastic cells often leads to chemotherapy failure. Better understanding of the cellular mechanisms that circumvent chemotherapy efficacy is paramount. The aim of this study was to investigate the response of two canine mammary tumour cell lines, CIPp from a primary tumour and CIPm, from its lymph node metastasis, to exposure to EC50(20h) DOX at 12, 24 and 48 h of treatment. We assessed the uptake and subcellular distribution of DOX, the expression and function of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), two important MDR mediators. To better understand this phenomenon the effects of DOX on the cell cycle and Ki67 cell proliferation index and the expression of p53 and telomerase reverse transcriptase (TERT) were also evaluated by immunocytochemistry (ICC). Results Both cell lines were able to uptake DOX within the nucleus at 3 h treatment while at 48 h DOX was absent from the intracellular compartment (assessed by fluorescence microscope) in all the surviving cells. CIPm, originated from the metastatic tumour, were more efficient in extruding P-gp substrates. By ICC and qRT-PCR an overall increase in both P-gp and BCRP were observed at 48 h of EC50(20h) DOX treatment in both cell lines and were associated with a striking increase in the percentage of p53 and TERT expressing cells by ICC. The cell proliferation fraction was decreased at 48 h in both cell lines and cell cycle analysis showed a DOX-induced arrest in the S phase for CIPp, while CIPm had an increase in cellular death without arrest. Both cells lines were therefore composed by a fraction of cells sensible to DOX that underwent apoptosis/necrosis. Conclusions DOX administration results in interlinked modifications in the cellular population including a substantial effect on the cell cycle, in particular arrest in the S phase for CIPp and the selection of a subpopulation of neoplastic cells bearing MDR phenotype characterized by P-gp and BCRP expression, TERT activation, p53 accumulation and decrease in the proliferating fraction. Important information is given for understanding the dynamic and mechanisms of the onset of drug resistance in a neoplastic cell population.


1999 ◽  
Vol 340 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Parisa DANAIE ◽  
Michael ALTMANN ◽  
Michael N. HALL ◽  
Hans TRACHSEL ◽  
Stephen B. HELLIWELL

The essential cap-binding protein (eIF4E) of Saccharomycescerevisiae is encoded by the CDC33 (wild-type) gene, originally isolated as a mutant, cdc33-1, which arrests growth in the G1 phase of the cell cycle at 37 °C. We show that other cdc33 mutants also arrest in G1. One of the first events required for G1-to-S-phase progression is the increased expression of cyclin 3. Constructs carrying the 5ʹ-untranslated region of CLN3 fused to lacZ exhibit weak reporter activity, which is significantly decreased in a cdc33-1 mutant, implying that CLN3 mRNA is an inefficiently translated mRNA that is sensitive to perturbations in the translation machinery. A cdc33-1 strain expressing either stable Cln3p (Cln3-1p) or a hybrid UBI4 5ʹ-CLN3 mRNA, whose translation displays decreased dependence on eIF4E, arrested randomly in the cell cycle. In these cells CLN2 mRNA levels remained high, indicating that Cln3p activity is maintained. Induction of a hybrid UBI4 5ʹ-CLN3 message in a cdc33-1 mutant previously arrested in G1 also caused entry into a new cell cycle. We conclude that eIF4E activity in the G1-phase is critical in allowing sufficient Cln3p activity to enable yeast cells to enter a new cell cycle.


Sign in / Sign up

Export Citation Format

Share Document