Line Shape of C Bands in Alkali Halide Phosphors by the Method of Moments

1972 ◽  
Vol 50 (12) ◽  
pp. 1370-1378 ◽  
Author(s):  
R. Sati ◽  
S. Wang ◽  
M. Inoue

We have derived the optical absorption line shape for C bands in alkali halide phosphors by the method of moments. The dynamic Jahn–Teller interaction is considered in the excited T1u electronic states. This interaction is taken to be linear in the lattice displacements. The obtained line shape exhibits asymmetric triplet structure even in the linear electron–lattice interaction. The use of the quasi-classical approach (i.e. the use of the adiabatic approximation and Franck–Condon principle) for electronic transition to orbitally degenerate states is discussed by comparing the line shapes obtained in this approach with those obtained by the method of moments.


1975 ◽  
Vol 53 (2) ◽  
pp. 192-199 ◽  
Author(s):  
Taiju Tsuboi ◽  
K. Oyama ◽  
P. W. M. Jacobs

A systematic investigation of the line shape of the A band of several ions with the s2 configuration dissolved in alkali halides has been made on KCl:In+, KBr:In+, KCl:Sn2+, KBr:Sn2+, KI:Sn2+, RbCl:Sn2+, KCl:Tl+, KBr:Tl+, KI:Tl+, and KBr:Pb2+ crystals. A temperature sensitive doublet structure was observed for In+ and Sn2+ doped crystals and for KCl:Tl+, while a single band, which is asymmetric at high temperatures, was observed for KBr:Tl+ and KBr:Pb2+. The temperature dependence of the line shape supports Toyozawa and Inoue's theory in which the fine structure is ascribed to the dynamical Jahn–Teller effect. A discussion is given of the importance of quadratic electron–lattice interaction and its effect on the asymmetry of the line shape.



2002 ◽  
Vol 715 ◽  
Author(s):  
T. Su ◽  
Robin Plachy ◽  
P. C. Taylor ◽  
S. Stone ◽  
G. Ganguly ◽  
...  

AbstractWe study the H NMR line shapes of a sample of a-Si:H under several conditions: 1) as grown, 2) light-soaked for 600 hours, and 3) light-soaked followed by annealing at different temperatures. At T = 7 K, the NMR line shape of the sample after light soaking exhibits an additional doublet compared to that of the sample as-grown. This doublet is an indication of a closely separated hydrogen pair. The distance between the two hydrogen atoms is estimated to be about (2.3 ± 0.2) Å. The concentration of these hydrogen sites is estimated to be between 1017 and 1018 cm-3 consistent with ESR measurements of the defect density after light soaking. This doublet disappears after the sample is annealed at 200°C for 4 hours.



2004 ◽  
Vol 76 (1) ◽  
pp. 147-155 ◽  
Author(s):  
M. Musso ◽  
F. Matthai ◽  
D. Keutel ◽  
K.-L. Oehme

Isotropic Raman line shapes of simple molecular fluids exhibit critical line broadening near their respective liquid-gas critical points. In order to observe this phenomenon, it is essential that the band position of a given vibrational mode is density-dependent, and that vibrational depopulation processes negligibly contribute to line broadening. Special attention was given to the fact that the isotropic (i.e., nonrotationally broadened) line shape of liquid N2 is affected by resonant intermolecular vibrational interactions between identical oscillators. By means of the well-chosen isotopic mixture (14N2).975 - (14N15N).025, the temperature and density dependences of shift, width, and asymmetry of the resonantly coupled 14N2 and, depending on the S/N ratio available, of the resonantly uncoupled 14N15N were determined, with up to milli-Kelvin resolution, in the coexisting liquid and gas phases and along the critical isochore, using a highest-resolution double monochromator and modern charge-coupled device detection techniques. Clear evidence was found that vibrational resonance couplings are present in all dense phases studied.



Author(s):  
N. H. Ngo ◽  
H. Tran ◽  
R. R. Gamache ◽  
J. M. Hartmann

A short overview of recent results on the effects of pressure (collisions) regarding the shape of isolated infrared lines of water vapour is presented. The first part of this study considers the basic collisional quantities, which are the pressure-broadening and -shifting coefficients, central parameters of the Lorentzian (and Voigt) profile and thus of any sophisticated line-shape model. Through comparisons of measured values with semi-classical calculations, the influences of the molecular states (both rotational and vibrational) involved and of the temperature are analysed. This shows the relatively unusual behaviour of H 2 O broadening, with evidence of a significant vibrational dependence and the fact that the broadening coefficient (in cm −1 atm −1 ) of some lines increases with temperature. In the second part of this study, line shapes beyond the Voigt model are considered, thus now taking ‘velocity effects’ into account. These include both the influence of collisionally induced velocity changes that lead to the so-called Dicke narrowing and the influence of the dependence of collisional parameters on the speed of the radiating molecule. Experimental evidence of deviations from the Voigt shape is presented and analysed. The interest of classical molecular dynamics simulations, to model velocity changes, together with semi-classical calculations of the speed-dependent collisional parameters for line-shape predictions from ‘first principles’, are discussed.



1976 ◽  
Vol 31 (6) ◽  
pp. 730-736 ◽  
Author(s):  
R. Rottler ◽  
C. G. Kreiter ◽  
G. Fink

The 13C NMR spectra of the ethylaluminium compounds [Al(C2H5)xCl3_x]2 x = 1, 1,5, 2 and 3 are presented and factors governing the temperature dependence of the line shape are discussed. The exchange reaction of terminal ethyl groups for chlorine ligands and ethyl ligands, resp., in ethylaluminium-sesquichloride was investigated by fitting the calculated line shapes to the observed spectra.The energy of activation of this exchange process was determined as to be 12,3 ‡ 1,5 kcal/mole. The synthesis of 13C2-[Al(C2H5)Cl2]2 is described.



The physical theory necessary for interpreting the vibrational spectra of spin-degenerate molecules is developed in this paper. Particular attention is paid to those molecules whose behaviour is expected to be markedly different from that of both orbitally non-degenerate molecules and those with purely spatial degeneracy. These include certain Kramers degenerate molecules, whose Raman spectra are expected to contain reverse-polarized contributions, and also tetrahedral and octahedral molecules in fourfold degenerate states. The case of a fourfold degenerate octahedral molecule is investigated in the limits of strong vibronic coupling by one of the Jahn—Teller active vibrations (e g and t 2g ). It turns out that the forbidden t 2u vibration may be infra-red active, that the Raman spectrum may contain reverse-polarized contributions and that both infra-red and Raman spectra may contain strong progressions of bands involving multiple excitations of the vibronically active vibration.



2002 ◽  
Vol 09 (02) ◽  
pp. 1209-1212 ◽  
Author(s):  
V. G. YARZHEMSKY ◽  
V. I. NEFEDOV ◽  
M. YA. AMUSIA ◽  
L. V. CHERNYSHEVA

Line shapes of photoionization satellites are theoretically investigated. Calculations were carried out for the satellite states 1s2s(3S)3s(2S) and 3s3p5(1P)4s(2P) of Ne 1s and Ar 3p vacancies, respectively, created in photoionization. Theory excellently reproduces experimental line shape parameters of the first satellite and predicts the two-peak structure of the second.



2013 ◽  
Vol 91 (11) ◽  
pp. 879-895 ◽  
Author(s):  
A.D. May ◽  
W.-K. Liu ◽  
F.R.W. McCourt ◽  
R. Ciuryło ◽  
J. Sanchez-Fortún Stoker ◽  
...  

An overview of the binary collision impact theory of spectral line shapes has been given to provide a unified statistical mechanical approach to line-shape theory, laser theory, nonlinear optics, and transport phenomena in dilute gases. The computation of spectral line profiles corresponding to those obtained from ultra-high-resolution spectral line-shape measurements requires numerical ab initio calculation of scattering amplitudes directly from the underlying dynamics of collisions between radiatively active molecules and their perturbers. The Wigner distribution function–density matrix is utilized to describe the kinetic theory of spectral line shapes and to discuss the various collisional processes that contribute to the kernel of kinetic equations. The influence of features of the potential energy surface on spectral parameters is also discussed, and the importance of comparing experimental line profiles directly with numerically computed line shapes obtained from reliable interaction potentials is emphasized. This contrasts sharply with the universal practice of comparing experimental line widths and shifts using some average or approximate theoretical scattering cross-sections and it contrasts sharply with fitting experimental profiles to some convenient analytical line-shape model; hence the phrase “a paradigm shift” in the title of this work.



1991 ◽  
Vol 46 (8) ◽  
pp. 691-696 ◽  
Author(s):  
Marco L. H. Gruwel ◽  
Roderick E. Wasylishen

AbstractUsing 2H NMR, the dynamics of the cation in phenethylammonium bromide were studied in the two solid phases. Line shape and spin-lattice relaxation rate studies of the ammonium headgroups and the adajacent methylene groups indicate the onset of alkyl-chain motion prior to the first order phase transition. In the low-temperature phase the line shape and the spin-lattice relaxation rates of the -ND3 groups are consistent with C3 jumps and an activation energy of 54±4 kJ mol-1. However, in the high-temperature phase the spin-lattice relaxation studies indicate the presence of small-angle diffusion of the -ND3 groups around the C3 symmetry axis. In this phase the -CD2- groups show line shapes typical of large-amplitude two-site jumps occurring at a rate > 107 s-1 . In the low-temperature phase, at temperatures below 295 K, the -CD2- 2H NMR line shapes indicate that the C - D bonds are essentially static



1969 ◽  
Vol 24 (3) ◽  
pp. 332-336 ◽  
Author(s):  
M Mehring ◽  
O Kanert

Abstract The spin echo line shapes of Rb87 and Br79.81 have been measured in undeformed and plasti­cally deformed RbBr single crystals. Analysis of the line shape of the measured echoes shows that the quadrupolar part of the echoes is given by point defects in the case of undeformed crystals, whereas in deformed crystals this term is determined by dislocations. A quantitative evaluation of the width of the quadrupolar shape yields the mean dislocation density in the samples as a function of the shear stress acting during the deformation. It was found that the square root of the dislocation density is proportional to the shear stress.



Sign in / Sign up

Export Citation Format

Share Document