A Rigorous Application of the Collective Model to Some Rare Earth Nuclei

1975 ◽  
Vol 53 (6) ◽  
pp. 559-573 ◽  
Author(s):  
B. Hird ◽  
K. H. Huang

The collective model of an odd neutron in an axially symmetric deformed Woods–Saxon potential, coupled to a rotating core, and containing the full RPC and pairing corrections has been used to predict the full low lying rotational band spectrum of the nuclei with N = 91 to 97. Only three adjustable parameters were used in each nucleus to fit the complete spectrum. It was possible in several nuclei to obtain the correct level sequence and in most to confirm level assignments, and the adjusted parameters were in good agreement with accepted values. However, the accuracy of this method is insufficient, in most nuclei, to provide reliable predictions for as yet unidentified bands. The lack of good overall agreements in the low lying spectra of these nuclei confirms that the core shape parameters do change from one band to another.

1982 ◽  
Vol 60 (3) ◽  
pp. 337-339
Author(s):  
B. A. Bishara

The construction of the "rotationally invariant core" (RIC) of the governor model for the deformed even–even nuclei has been studied for the rare earths. The comparison of the RIC nucleons with the shell model configurations shows that the model's assumption of "spherical" RIC is almost true only for the axially symmetric deformed nuclei. For asymmetric triaxial deformed nuclei, the study supports the assumption of the governor asymmetric rotator model, namely that the RIC is an axially symmetric prolate. The core shrinkage at higher rotational energies has been also calculated for several rare-earth nuclei.


Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 39
Author(s):  
Oleg Onishchenko ◽  
Viktor Fedun ◽  
Wendell Horton ◽  
Oleg Pokhotelov ◽  
Natalia Astafieva ◽  
...  

A new model of an axially-symmetric stationary concentrated vortex for an inviscid incompressible flow is presented as an exact solution of the Euler equations. In this new model, the vortex is exponentially localised, not only in the radial direction, but also in height. This new model of stationary concentrated vortex arises when the radial flow, which concentrates vorticity in a narrow column around the axis of symmetry, is balanced by vortex advection along the symmetry axis. Unlike previous models, vortex velocity, vorticity and pressure are characterised not only by a characteristic vortex radius, but also by a characteristic vortex height. The vortex structure in the radial direction has two distinct regions defined by the internal and external parts: in the inner part the vortex flow is directed upward, and in the outer part it is downward. The vortex structure in the vertical direction can be divided into the bottom and top regions. At the bottom of the vortex the flow is centripetal and at the top it is centrifugal. Furthermore, at the top of the vortex the previously ascending fluid starts to descend. It is shown that this new model of a vortex is in good agreement with the results of field observations of dust vortices in the Earth’s atmosphere.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


1971 ◽  
Vol 49 (13) ◽  
pp. 1832-1835 ◽  
Author(s):  
M. Csürös ◽  
J. A. Cameron ◽  
Z. Zàmori

Calculations based on the collective model with intermediate coupling between the surface oscillations of the even–even core 54Fe and 29th neutron have been carried out. Level energies, spectroscopic factors, and electromagnetic properties are obtained in good agreement with experiment.


2018 ◽  
Vol 82 (2) ◽  
pp. 21001
Author(s):  
Grzegorz Tytko ◽  
Leszek Dziczkowski

The paper examines the problem of an axially symmetric I-cored coil located above a three-layered plate with a hole in the middle layer. A cylindrical coordinate system was applied, wherein the solution domain was truncated in the radial direction. The employment of the truncated region eigenfunction expansion (TREE) method resulted in deriving the final formulas for the change of the coil impedance with regard to the air space, and also pertaining to the test object without a flaw. Formulas for various configurations of the test object, among others for a surface hole, a subsurface hole and a through hole, have been presented. For the purpose of defectoscopy, the influence of the hole in the plate on the impedance components was investigated. The calculations were made in Matlab for frequencies from 100 Hz to 50 kHz. The obtained results were verified using the finite element method (FEM) in Comsol Multiphysics package. A very good agreement was observed in the case of both the resistance and reactance.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Eduard Amromin

Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.


2011 ◽  
Vol 1 (4) ◽  
pp. 348-354 ◽  
Author(s):  
H. İz ◽  
X. Ding ◽  
C. Dai ◽  
C. Shum

Polyaxial Figures of the MoonThis study investigates various models to represent the gross geometric shape of the Moon. Asymmetric polyaxial geometric models-namely three-, four- and six-axial lunar figure - are compared and contrasted with the axially symmetric three-axis ellipsoidal model derived from Chang'e 1 and SELENE laser altimetry data. All solutions confirm a hydrostatically stable lunar shape shifted with respect to the lunar center of mass by topography. Model solutions with increasing complexity offer additional information about the regional properties of the lunar topography. Solution statistics suggest that axially symmetric lunar figures and their center of figure parameters can be replaced by an equivalent asymmetric lunar shape centered at the center of mass of the Moon. Thus, using only three shape parameters, one can derive an "egg" shape that better accommodates the true geometry of the Moon.


2008 ◽  
pp. 66-72

Coulomb form factors for E0 transition in 18O are discussed taking into account core-polarization effects. These effects are taken into account through the collective model of Tassie and also through a microscopic perturbation theory including excitations up to 2p1f shell. Space wave model functions defined for the orbits 1 and 2125O nucleus has been the subject of extensive theoretical and experimental studies, which received much attention in last decade [Alex Brown et.al.2005]. The 18O system contains two neutrons in addition to the16O core distributed in the sd – shell. d1 are obtained from the diagonalization of the interaction Hamilonian of Wildenthal. The calculations include the 0 2state with excitation energies3.6337MeV. The core – polarization effects which incorporate the ollective model of Tassei describe the data very well for this state.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lei Jichong ◽  
Xie Jinsen ◽  
Chen Zhenping ◽  
Yu Tao ◽  
Yang Chao ◽  
...  

This work is interested in verifying and analyzing the advanced neutronics assembly program KYLIN V2.0. Assembly calculations are an integral part of the two-step calculation for core design, and their accuracy directly affects the results of the core physics calculations. In this paper, we use the Doppler coefficient numerical benchmark problem and CPR1000 AFA-3G fuel assemblies to verify and analyze the advanced neutronics assembly program KYLIN V2.0 developed by the Nuclear Power Institute of China. The analysis results show that the Doppler coefficients calculated by KYLIN V2.0 are in good agreement with the results of other well-known nuclear engineering design software in the world; the power distributions of AFA-3G fuel assemblies are in good agreement with the results of the RMC calculations, it’s error distribution is in accordance with the normal distribution. It shows that KYLIN V2.0 has high calculation accuracy and meets the engineering design requirements.


2017 ◽  
Vol 872 ◽  
pp. 399-404
Author(s):  
Zakaria Ibnorachid ◽  
Khalid El Bikri ◽  
Lhoucine Boutahar

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave as Euler-Bernoulli beams while the core layer as a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters. Two types of boundary conditions simple supported-simple-supported (SS-SS) and clamped-clamped (C-C) under the influence of materials properties and geometrical parameters are studied. The validation of results is done by comparing with another studies, which available in the literature and found good agreement between the studies.


Sign in / Sign up

Export Citation Format

Share Document