Stimulated emission from a He–Cd hollow-cathode discharge in a magnetic field

1978 ◽  
Vol 56 (8) ◽  
pp. 1071-1076 ◽  
Author(s):  
C. P. Cristescu ◽  
A. I. Lupaşcu ◽  
I. M. Popescu ◽  
A. M. Preda

The simultaneous oscillation on the 533.7 and 537.8 nm lines of Cd II of a hollow cathode laser with internal mirrors is studied as a function of an applied transverse magnetic field. The oscillations parallel to the field and perpendicular to it show different behaviour, but both of them are suppressed by magnetic fields in excess of certain values, which are different for the two oscillations. It is shown that the observed change of the power output with the increase of the magnetic field can be understood only if the effects of the field both on the plasma and on the atomic transition are taken into account.

1971 ◽  
Vol 11 (03) ◽  
pp. 223-228 ◽  
Author(s):  
C.I. Pierce ◽  
L.C. Headley ◽  
W.K. Sawyer

Abstract Simplified models, consisting of single, circular channels and channels of different length and diameter in series and parallel combinations, are used in conjunction with the equations of Poiseuille and Hartmann to demonstrate the dependence of the rate of flow of mercury in the models on channel dimensions when the models are subjected to transverse magnetic fields. Experimental tests conducted on mercury-saturated, glass-bead packs and a natural rock sample show that a magnetic field applied transversely to the direction of flow retards flow rate. The magnitude of the magnetic effect increased with increasing bead size and field intensity. Results of this work suggest that magnetic fields have potential in the study of the internal geometry of flow channels in porous media. Introduction The purpose of this work is to determine qualitatively by theoretical and experimental considerations whether or not a magnetic method has potential in the study of the basic properties of rock. The nature of the solid surface and the geometry of the pore network in petroleum-bearing rock plays an important role in the flow behavior of fluids in a petroleum reservoir. Hence, any technique of study that would provide new and additional information on the rock matrix would contribute to a better understanding of petroleum reservoir performance. One such technique appearing to offer performance. One such technique appearing to offer promise is in the area of magnetohydrodynamics. promise is in the area of magnetohydrodynamics. While much research, both theoretical and experimental, has been devoted to the problems concerned with the flow of conducting fluids in transverse magnetic fields in single channels, very little information has been published regarding the behavior of conducting liquids in porous media under the influence of a transverse magnetic field. Perhaps this dearth of information can be attributed Perhaps this dearth of information can be attributed to two main causes:the pores and pore connections are generally so small that intense magnetic fields are required to produce Hartmann numbers of sufficient magnitude to exert appreciable influence on flow rate, andthe extreme complexity of the channel systems in porous media render them intractable to theoretical analysis unless numerous assumptions are made to simplify network geometry. When a conducting fluid moves in a channel in a transverse magnetic field, a force is exerted on the fluid which retards its flow. The magnitude of flow-rate retardation increases with increasing field intensity, channel dimensions and channel-wall conductivity. These magnetohydrodynamic phenomena and theory have been described and developed by various investigators. Since a petroleum reservoir rock is an interconnected network of pores and channels within a rock framework, one would anticipate that the geometry of the network would exert some influence on the magnitude of the effect of a transverse magnetic field on the rate of flow of a conducting fluid therein. The purpose of this work is to demonstrate through the use of simple models and experimental data that the magnetic field effect on flow rate has potential for use in determining size and size potential for use in determining size and size distribution of pores in porous materials. THEORY Electromagnetic induction in liquids is not completely defined, and the complexities involved in many cases appear to defy true analytical expression. However, by applying some simplifying assumptions, these cases may be made tractable to solution to provide qualitative indication of system behavior. The following analysis was conducted in conjunction with laboratory tests to determine if magnet ohydrodynamics has possible potential as a tool for studying the internal geometry of porous systems. When a conducting liquid moves in a channel in a transverse magnetic field, an emf is developed in the channel normal to both the channel axis and the magnetic field. This emf causes circulating currents to flow in the liquid as shown in Fig. 1. SPEJ P. 223


1993 ◽  
Vol 141 ◽  
pp. 196-198
Author(s):  
Weihong Song ◽  
Guoxiang Ai

AbstractAdopting the computational model of papers I and II (Song et al. 1990, 1992) we have found that for a better fit of the center of the Fe I 5324.19 Å line, the effect of turbulent Doppler broadening has to be taken into account. Through theoretical and numerical analysis we conclude that the square root of the modulus of Stokes Q and U is an appropiate observational parameter to represent the transverse magnetic field, since it is approximately linearly proportional to the strength of the transverse magnetic field for suitable positions of the filter passband.


1989 ◽  
Vol 42 (1) ◽  
pp. 91-110 ◽  
Author(s):  
J. Koga ◽  
J. L. Geary ◽  
T. Fujinami ◽  
B. S. Newberger ◽  
T. Tajima ◽  
...  

We study plasma-beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic β) we study both large- and small-ion-gyroradius beams. Large-ion-gyroradius beams with a large dielectric constant ε ≫ (M/m)½ are found to propagate across the magnetic field via E × B drifts at nearly the initial injection velocity, where and M/m is the ion-to-electron mass ratio. Beam degradation and undulations are observed, in agreement with previous experimental and analytical results. When ε is of order (M/m)½ the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When ε is much less than (M/m)½ the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small-ion-gyroradius beam injection a flute-type instability is observed at the beam-magnetic-field interface. In the case of large beam momentum or energy (high drift kinetic β) we observe good penetration of a plasma beam by shielding the magnetic field from the interior of the beam (diamagnetism). However, we observe anomalously fast penetration of the magnetic field into the beam and find that the diffusion rate depends on the electron gyroradius of the beam.


1983 ◽  
Vol 36 (6) ◽  
pp. 859 ◽  
Author(s):  
HA Blevin ◽  
MJ Brennan

Expressions are derived for the electron concentration in Townsend discharges in the presence of a transverse magnetic field for both steady state and pulsed conditions. These results indicate that the two components of the electron drift velocity and the four diffusion coefficients required to describe the concentration distribution can be determined by observation of photons emitted from the discharge.


2011 ◽  
Vol 337 ◽  
pp. 300-306
Author(s):  
Wen Chang Lang

The object of this article is to make research on the influence of transverse magnetic field and pulse bias on macro-particles on the surface of film, find the systematic law and analyze the influence law and reasons of the two parameters (transverse magnetic field and pulse bias), according to the mechanism of arc spot movement and the interaction between macro-particles and plasma. Moreover, this article aims at seeking the most important influence parameter and comparing the effect of the two parameters. Research in this paper indicates that: the key factor is the magnetic field controlled arc spot movement, because the influence of magnetic field on reducing macro-particles is much larger than bias, and the influence degree of bias on macro-particles varies with the magnetic field intensity; action of bias is obvious under the condition of low magnetic field intensity, but as the magnetic field intensity increases, its action becomes weaker and weaker; besides, purification effect of bias on particles in larger size is better than on particles in smaller size.


1998 ◽  
Vol 76 (7) ◽  
pp. 507-513
Author(s):  
O Bolina ◽  
J R Parreira

We show that the ground state of the xy model (ferromagnetic orantiferromagnetic) in a transverse magnetic field h --- for any spin value, in any dimension --- is the state with all spins aligned antiparallel to the field when h is greater than some critical value hc. In particular, for the spin-1/2 linear chain, we study the behavior of correlations as functions of the magnetic field. PACS Nos.: 75.10Jm and 64.60.Cm


1993 ◽  
Vol 141 ◽  
pp. 461-464
Author(s):  
Wang Huaning ◽  
Lin Yuanzhang

The 180° ambiguity of the transverse magnetic field measured by a heliomagnetograph is an intrinsic problem due to the linear polarization in Zeeman effect(Harvey, 1969). Thus we have to make use of some criteria for calibrating the transverse magnetic fields in vector magnetograms. Up to now, a few criteria have been suggested by some solar physicists (Harvey, 1969; Krall et al., 1982; Sakurai et al., 1985; Aly, 1989; Wu and Ai, 1990; Canfield et al., 1991. The existing criteria could be classified as observational criteria and mathematical criteria. The former is based on the observation facts, such as the fibrils and the filaments in solar filtergrams, and the latter is derived from the mathematical model of solar magnetic field, such as divergence equation (∆. B = 0), potential field model and force-free field model. These criteria, however, are not applicable to all solar active regions, especially to those with complicated magnetic fields. For this reason, we suggest a synthesized method for calibrating the transverse magnetic fields in solar vector magnetograms.


2020 ◽  
Vol 28 ◽  
pp. 3-8
Author(s):  
Louisa A. Saypulaeva ◽  
Shapiullah B. Abdulvagidov ◽  
Magomed M. Gadjialiev ◽  
Abdulabek G. Alibekov ◽  
Naida S. Abakarova ◽  
...  

The Cd3As2+MnAs composite with 20 mole % of MnAs has been studied complexly in a wide ranges of temperatures, pressures and magnetic fields. Negative magnetic resistance has been found in the sample. This anomalous behavior is considered as a result of changes in tunneling processes due to reduce of distance between magnetic moment of ferromagnetic and structural transitions caused by pressure.


In a previous paper (1932) an attempt to measure the effect, if any, of a transverse magnetic field on the velocity of light in vacuo was described. No change greater than 1 part in 2 x 10 7 was found in a field of 18,000 oersted. As the Jamin interferometer used had certain drawbacks for an experiment of this kind, it was decided to set up a Michelson type of interferometer, the use of which might be expected to avoid some of these difficulties and increase the sensitivity. In particular, one of the interfering rays could be made to pass twice through the magnetic field, or, by means of auxiliary mirrors, a multiple of this, while the other interfering ray, being at right angles to the first, was well away from the vicinity of the main leakage field, which would have a compensating effect as far as any change in velocity was concerned.


2019 ◽  
Vol 873 ◽  
pp. 151-173
Author(s):  
Jun-Hua Pan ◽  
Nian-Mei Zhang ◽  
Ming-Jiu Ni

The wake structure of an incompressible, conducting, viscous fluid past an electrically insulating sphere affected by a transverse magnetic field is investigated numerically over flow regimes including steady and unsteady laminar flows at Reynolds numbers up to 300. For a steady axisymmetric flow affected by a transverse magnetic field, the wake structure is deemed to be a double plane symmetric state. For a periodic flow, unsteady vortex shedding is first suppressed and transitions to a steady plane symmetric state and then to a double plane symmetric pattern. Wake structures in the range $210<Re\leqslant 300$ without a magnetic field have a symmetry plane. An angle $\unicode[STIX]{x1D703}$ exists between the orientation of this symmetry plane and the imposed transverse magnetic field. For a given transverse magnetic field, the final wake structure is found to be independent of the initial flow configuration with a different angle $\unicode[STIX]{x1D703}$. However, the orientation of the symmetry plane tends to be perpendicular to the magnetic field, which implies that the transverse magnetic field can control the orientation of the wake structure of a free-moving sphere and change the direction of its horizontal motion by a field–wake–trajectory control mechanism. An interesting ‘reversion phenomenon’ is found, where the wake structure of the sphere at a higher Reynolds number and a certain magnetic interaction parameter ($N$) corresponds to a lower Reynolds number with a lower $N$ value. Furthermore, the drag coefficient is proportional to $N^{2/3}$ for weak magnetic fields or to $N^{1/2}$ for strong magnetic fields, where the threshold value between these two regimes is approximately $N=4$.


Sign in / Sign up

Export Citation Format

Share Document