A study of the 3He(γ, π+)3H cross section near threshold

1980 ◽  
Vol 58 (6) ◽  
pp. 768-771 ◽  
Author(s):  
Edward T. Dressler ◽  
Edward L. Tomusiak

The effects of contributions from pion momentum, Fermi momentum, and Δ-resonance terms on the 3He(γ,π+)3H cross section near threshold are investigated in this paper. The pion momentum terms are shown to give important corrections individually, but their combined effect gives results which are almost equivalent to previous simpler calculations. Using a simple nuclear model, the results agree well with recent experimental data.

2015 ◽  
Vol 11 (2) ◽  
pp. 2972-2978
Author(s):  
Fouad A. Majeed ◽  
Yousif A. Abdul-Hussien

In this study the calculations of the total fusion reaction cross section have been performed for fusion reaction systems 17F + 208Pb and 15C + 232Th which involving halo nuclei by using a semiclassical approach.The semiclassical treatment is comprising the WKB approximation to describe the relative motion between target and projectile nuclei, and Continuum Discretized Coupled Channel (CDCC) method to describe the intrinsic motion for both target and projectile nuclei. For the same of comparsion a full quantum mechanical clacualtions have been preforemd using the (CCFULL) code. Our theorticalrestuls are compared with the full quantum mechaincialcalcuations and with the recent experimental data for the total fusion reaction  checking the stability of the distancesThe coupled channel calculations of the total fusion cross section σfus, and the fusion barrier distribution Dfus. The comparsion with experiment proves that the semiclassiacl approach adopted in the present work reproduce the experimental data better that the full quantal mechanical calcautions. 


Development ◽  
1961 ◽  
Vol 9 (3) ◽  
pp. 514-533
Author(s):  
Lauri Saxén ◽  
Sulo Toivonen

On the basis of certain earlier suggestions made by Lehmann (1950) and Yamada (1950), together with our own experimental data, a modification of the two-gradient hypothesis of primary induction was presented by us some years ago (Toivonen & Saxén, 1955). Subsequently, this theory has often been referred to, accepted or criticized, and even misunderstood. There may thus be reasons for discussing it in the light of some recent experimental data. At present there are limits to our opportunities of studying what is obviously the most important point in embryonic induction, the induction process itself. Simultaneously with such experiments on the induction process it is therefore necessary to continue research work on classical lines, and to obtain a further clarification of the causal relationships between the inductor and its morphogenetic action. A variety of qualitative investigations in this category have been made, but conceptions of the different quantities and the ratios of the active agents which participate in the primary induction are still based on indirect data.


1991 ◽  
Vol 69 (5) ◽  
pp. 603-605
Author(s):  
D. Petrini ◽  
J. A. Tully

Auger decay following inner-shell photoexcitation of atomic beryllium is studied using the University College London close-coupling codes. We reproduce some of the features observed experimentally by Krause and co-workers. The vastly predominant decay mode of Be 1s2s2np1P° is to Be+ 1s2np rather than the ground state of Be+ and the theoretical np/2s ratio agrees with the experimental value. The peak observed in the partial photoionization cross section for formation of 1s(2s2p3P) 2P° is due to photoexcitation of 1s2s(3s3p3P) 1P° followed by autoionization. Our theoretical result reproduces this feature. Strong configuration interaction effects limit the accuracy we can achieve for the radiationless decay width.


1997 ◽  
Vol 12 (22) ◽  
pp. 3985-3994
Author(s):  
Michael Krämer

I discuss the impact of color-octet contributions and higher-order QCD corrections on the cross section for inelastic J/ψ photoproduction. The theoretical predictions are compared with recent experimental data obtained at HERA.


2020 ◽  
Vol 239 ◽  
pp. 05006
Author(s):  
A. Stamatopoulos ◽  
A. Tsinganis ◽  
M. Diakaki ◽  
N. Colonna ◽  
M. Kokkoris ◽  
...  

Neutron-induced fission cross sections of isotopes involved in the nuclear fuel cycle are vital for the design and safe operation of advanced nuclear systems. Such experimental data can also provide additional constraints for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of fission models. In the present work, the 237Np(n,f) cross section was studied at the EAR2 vertical beam-line at CERN's n_TOF facility, over a wide range of neutron energies, from meV to MeV, using the time-of-flight technique and a set-up based on Micromegas detectors, in an attempt to provide accurate experimental data. Preliminary results in the 200 keV – 14 MeV neutron energy range as well as the experimental procedure, including a description of the facility and the data handling and analysis, will be presented.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950046
Author(s):  
M. Rashdan ◽  
M. M. Taha ◽  
T. A. Abdel-Karim ◽  
S. Esmail

The nucleus–nucleus reaction cross-sections of [Formula: see text]C and [Formula: see text]C at 240[Formula: see text]MeV/u are calculated using the optical limit of the Glauber model. The deformation and radii of a deformed Fermi density are calculated from the relativistic mean field (RMF). The results are compared with the recent experimental data. It is found that the Fermi density whose quadrupole deformation parameters and radii are derived from RMF, using TMA effective interaction in the RMF Lagrangian, provide a satisfactory explanation of the experimental data of Na isotopes, except for [Formula: see text]Na, which are expected to be strongly deformed. For F isotopes, the deformed Fermi density adjusted to the radii derived from RMF, using TMA interaction, presents a lower reaction cross-section. The Lagrangian parameters set NL3* gives a good description of the data which is better than that predicted by TMA. On the other hand, the two forces cannot describe the reaction cross-section of [Formula: see text]F since it is expected to have a deformed halo structure. The radius deduced from the data is found to be of the order 3.5[Formula: see text]fm.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2019 ◽  
Vol 108 (1) ◽  
pp. 11-17
Author(s):  
Mert Şekerci ◽  
Hasan Özdoğan ◽  
Abdullah Kaplan

Abstract One of the methods used to treat different cancer diseases is the employment of therapeutic radioisotopes. Therefore, many clinical, theoretical and experimental studies are being carried out on those radioisotopes. In this study, the effects of level density models and gamma ray strength functions on the theoretical production cross-section calculations for the therapeutic radioisotopes 90Y, 153Sm, 169Er, 177Lu and 186Re in the (n,γ) route have been investigated. TALYS 1.9 code has been used by employing different level density models and gamma ray strength functions. The theoretically obtained data were compared with the experimental data taken from the literature. The results are presented graphically for better interpretation.


2016 ◽  
Vol 104 (8) ◽  
Author(s):  
Junhua Luo ◽  
Chunlei Wu ◽  
Li Jiang ◽  
Long He

Abstract:The cross sections for (n,x) reactions on samarium isotopes were measured at (d-T) neutron energies of 13.5 and 14.8 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Theoretical calculations of excitation functions were performed using the nuclear model codes TALYS-1.6 and EMPIRE-3.2 Malta with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature. At neutron energies 13.5 and 14.8 MeV, the cross sections of the


Sign in / Sign up

Export Citation Format

Share Document