The cloudy bag model. IV. Pionic corrections to the nucleon properties

1982 ◽  
Vol 60 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Serge Théberge ◽  
Gerald A. Miller ◽  
A. W. Thomas

A detailed formulation of the Hamiltonian formalism, together with a consistent renormalization procedure, is described for the cloudy bag model. The electromagnetic properties of the nucleon are calculated with center-of-mass corrections included. Good agreement with the experimental results is obtained for bag radii ranging from 0.8 to 1.0 fm.

2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


2007 ◽  
Vol 353-358 ◽  
pp. 1229-1232
Author(s):  
Z.N. Yin ◽  
L.F. Fan ◽  
Tie Jun Wang

Dynamic Mechanical Analysis (DMA) and static relaxation tests are carried out to study the viscoelastic deformation of PC/ABS alloy with blending ratio of PC to ABS being 50/50. A modified approach is developed to calculate the relaxation modulus of PC/ABS alloy from the DMA experimental results of storage and loss moduli. Comparison of the results obtained from DMA and static relaxation tests is presented and good agreement is found.


1990 ◽  
Vol 195 ◽  
Author(s):  
S. Berthier ◽  
K. Driss-Khodja

ABSTRACTIn order to take into account the actual morphology of the inhomogeneous media, we have developed, effective medium models based on a 2D and 3D position space renormalization /1,2/. These models predict the dipolar resonance and the percolation transition with critical exponents in good agreement with theoretical values and fairly reproduce most of the experimental results, whatever the concentration is. Further more, this allows a valuable comparison of the predictions of our models when applied on different lattices like real digitized TEM of cermet films or randomly occupied lattices.


1971 ◽  
Vol 49 (13) ◽  
pp. 1832-1835 ◽  
Author(s):  
M. Csürös ◽  
J. A. Cameron ◽  
Z. Zàmori

Calculations based on the collective model with intermediate coupling between the surface oscillations of the even–even core 54Fe and 29th neutron have been carried out. Level energies, spectroscopic factors, and electromagnetic properties are obtained in good agreement with experiment.


2011 ◽  
Vol 243-249 ◽  
pp. 258-262
Author(s):  
Jun Chen ◽  
Jia Lv ◽  
Qi Lin Zhang ◽  
Zhi Xiong Tao ◽  
Jun Chen

Laminated glass has been increasing widely used in high rise buildings as a kind of safety glass in recent years. So we should analyze its material property. In this paper, we use flexural experiments and ANSYS program to analyze the main factors that affect the flexural capacity of the laminated glass. The test results show that the flexural capacity is closely related to film. And the ANSYS program had got good agreement with the experimental results. Comparison of experimental results with calculated ones indicates that the current design code will lead to conservative results and the equivalent thickness of laminated glasses provided in the code should be further discussed.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Yoshikazu Mori ◽  
Akihiko Nakada

A patient lift is an assistive device for patients who lack sufficient strength or muscle control to be transferred between a wheelchair and a toilet or other places. Patient lifts of two kinds are commonly used: overhead lifts and mobile lifts. Nevertheless, because of its size and weight, carrying even a mobile lift with a wheelchair is difficult when leaving home. This study examined a novel portable patient lift that is small and light, sufficient to be carried using a wheelchair in a folded state. It is compact, light, and portable because it has no actuator. Moreover, its operation is simple. It is useful not only at home or in a nursing home but on any flat surface during daily excursions and activities, even in a conventional lavatory. A caregiver can transfer a user with a small force because this lift has a sliding mechanism that brings the fulcrum closer to the patient's center of mass. Experimental results underscore the effectiveness of the proposed patient lift.


1999 ◽  
Vol 122 (4) ◽  
pp. 323-327
Author(s):  
G. Refai-Ahmed ◽  
M. M. Yovanovich

A numerical and experimental study of conduction heat transfer from low power magnetic components with gull wing leads was conducted to determine the effects of distributing the power loss between the core, the winding and the thermal underfill on the thermal resistance. The numerical study was conducted in the power loss ratio range of 0.5⩽PR⩽1.0, where the only active power loss was from the winding at PR=1. In addition, the effect of the thermal underfill material between the substrate and the lower surface of the magnetic package on the thermal performance of the magnetic device was also examined. For comparison, a test was conducted on a magnetic component at PR=1, without thermal underfill. This comparison revealed good agreement between the numerical and experimental results. Finally, a general model was proposed for conduction heat transfer from the surface mount power magnetic packages. The agreement between the model and the experimental results was within 8 percent. [S1043-7398(00)00704-0]


Sign in / Sign up

Export Citation Format

Share Document