Core-polarization-corrected multiconfiguration Dirac–Fock oscillator strengths and excitation energies for the 5s2 1S0 – 5s5p 3P1, 1P1 transitions in Sr I and Y II spectra

1987 ◽  
Vol 65 (12) ◽  
pp. 1612-1619 ◽  
Author(s):  
J. Migdalek ◽  
W. E. Baylis

Energies and oscillator strengths for the spin-allowed 5s2 1S0 – 5s5p 1P1 and spin-forbidden 5s2 1S0 – 5s5p 3P1 transitions in neutral strontium and singly ionized yttrium are determined in relativistic multiconfiguration Dirac–Fock computations where modest relativistic configuration mixing to represent intravalence correlation is combined with a polarization model to account for valence–core electron correlation. It is demonstrated, by comparison of the results corrected for electron correlation with those obtained from relativistic intermediate coupling Dirac–Fock calculations, that both intravalence and core–valence correlation are important for achieving good agreement with experiment. However, for neutral strontium it is the intravalence correlation that seems to be more important whereas for the isoelectronic singly ionized yttrium the core-valence correlation, as represented by the core-polarization model, dominates. A delicate balance resulting from the partial collapse of the 4d orbital in Y+ may be a reason for the greater sensitivity to core polarization in this system.

2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


1979 ◽  
Vol 34 (4) ◽  
pp. 523-524 ◽  
Author(s):  
R. Krieger ◽  
J. Voitländer

The direct and core-polarization contributions to the Knight shift in palladium metal have been calculated taking an enhancement factor of 10 for d- and 1.28 for s-electrons. We found a large negative contribution of - 3.88% for the core electrons and a comparatively small direct contribution of 0.18% for s-electrons on the Fermi surface. Together with an estimated contribution of 0.36% for conduction electrons in s-orbitals, but not on the Fermi surface, the calculated total amount of - 3.34% is in good agreement with the experimental value of - 4% obtained by the Jaccarino plot for palladium at 0 K


A theoretical analysis is made of the hyperfine structure of the twelve levels of Eu I 4 f 7 ( 8 S ) 6 s 6 p using intermediate-coupled eigenfunctions obtained from a least-squares fit of the energies of the levels. Relativistic effects for the 6 p electron are calculated throughout by tensor-operator techniques. Good agreement is obtained with the observed A values, treating as parameters the polarization of the core (by the f electrons) and the hyperfine interaction constant of the 6 s electron. The magnitude of the core polarization is related to data on Eu I 4 f 7 ( 8 S ) 6s 2 , Euii 4 f 7 ( 8 s ) 6 s , and Eu III 4 f 7 ( 8 S ). The hyperfine-structure anomalies also fall into a consistent pattern. The observed B values are related to quadrupole moments of 151 Eu and 153 Eu.


Author(s):  
Evaldas Bubelis ◽  
Algirdas Kaliatka ◽  
Eugenijus Uspuras

The paper presents an evaluation of RELAP5-3D code suitability to model specific transients that take place during RBMK-1500 reactor operation, where the neutronic response of the core is important. A successful best estimate RELAP5-3D model of the Ignalina NPP RBMK-1500 reactor has been developed and validated against real plant data. Certain RELAP5-3D transient calculation results were benchmarked against calculation results obtained using the Russian code STEPAN, specially designed for RBMK reactor analysis. Comparison of the results obtained, using the RELAP5-3D and STEPAN codes, showed quite good mutual coincidence of the calculation results and good agreement with real plant data.


2020 ◽  
Vol 639 ◽  
pp. A25 ◽  
Author(s):  
W. Li ◽  
P. Rynkun ◽  
L. Radžiūtė ◽  
G. Gaigalas ◽  
B. Atalay ◽  
...  

Aims. The Landé g-factor is an important parameter in astrophysical spectropolarimetry, used to characterize the response of a line to a given value of the magnetic field. The purpose of this paper is to present accurate Landé g-factors for states in B II, C I−IV, Al I−II, Si I−IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II. Methods. The multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods, which are implemented in the general-purpose relativistic atomic structure package GRASP2K, are employed in the present work to compute the Landé g-factors for states in B II, C I−IV, Al I−II, Si I−IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II. The accuracy of the wave functions for the states, and thus the accuracy of the resulting Landé g-factors, is evaluated by comparing the computed excitation energies and energy separations with the National Institute of Standards and Technology (NIST) recommended data. Results. All excitation energies are in very good agreement with the NIST values except for Ti II, which has an average difference of 1.06%. The average uncertainty of the energy separations is well below 1% except for the even states of Al I; odd states of Si I, Ca I, Ti II, Zr III; and even states of Sn II for which the relative differences range between 1% and 2%. Comparisons of the computed Landé g-factors are made with available NIST data and experimental values. Analysing the LS-composition of the wave functions, we quantify the departures from LS-coupling and summarize the states for which there is a difference of more than 10% between the computed Landé g-factor and the Landé g-factor in pure LS-coupling. Finally, we compare the computed Landé g-factors with values from the Kurucz database.


1982 ◽  
Vol 60 (5) ◽  
pp. 766-778 ◽  
Author(s):  
R. A. Brown

Progress in understanding the contributions of dislocations and grain boundaries to the residual electrical resistivity in metals is reviewed. Following a summary of experimental data on dislocation and grain-boundary resistivity, it is shown that the resistivity due to the latter can be simply understood in terms of the independent scattering of electrons by individual dislocations of the ordered arrays which form the boundaries. The significance of this observation in establishing the relative dominance of dislocation core scattering over strain-field scattering, so far as charge transport is concerned, is discussed. A brief review of the multitude of dislocation–electron scattering calculations which have appeared in the literature is presented. This shows that theories which neglect the core contribution have invariably failed to account for the order of magnitude of the observed resistivity, again suggesting that core scattering dominates the issue. A simple formula derived from a resonance model of the core-electron interaction is shown to yield dislocation (and hence grain-boundary resistivity) contributions in good agreement with experiment.


2021 ◽  
Vol 38 (11) ◽  
pp. 113101
Author(s):  
Qing Liu ◽  
Jiguang Li ◽  
Jianguo Wang ◽  
Yizhi Qu

The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s 2, 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.


Sign in / Sign up

Export Citation Format

Share Document