Frost heave – pipeline interaction using continuum mechanics

1983 ◽  
Vol 20 (2) ◽  
pp. 251-261 ◽  
Author(s):  
J. F. Nixon ◽  
N. R. Morgenstern ◽  
S. N. Reesor

As a chilled pipeline crosses a transition from frozen to unfrozen ground or shallow permafrost, a differential frost heave problem may develop causing strains in the pipe. Soil–structure interaction models that are currently available to handle this problem concentrate on the pipe as the dominant structural member and represent the soil mass as a series of unconnected springs. This paper considers the soil to be an elastic or nonlinear viscous continuum and imposes a nonlinear boundary condition to represent the frost heaving soil and the dependence of frost heave on applied pressure. The pipe is assumed to be a completely passive structural member and the soil strains at the pipe elevations are studied. The dependence of the maximum pipe strains on the length of the heaving section and on the thickness of frozen ground beneath the pipe have been established for a typical set of soil and frost heaving conditions. It is found that, for the conditions studied, when the thickness of shallow permafrost or frozen soil is greater than about 7–8 m, the strains that a flexible pipe experiences are less than the strain criteria currently in use on many pipeline projects. Keywords: frost heave, pipeline, interaction, stress analysis, finite elements, continuum mechanics, thermo-elasticity.

Author(s):  
Yan Di ◽  
Jian Shuai ◽  
Lingzhen Kong ◽  
Xiayi Zhou

Frost heave must be considered in cases where pipelines are laid in permafrost in order to protect the pipelines from overstress and to maintain the safe operation. In this paper, a finite element model for stress/strain analysis in a pipeline subjected to differential frost heave was presented, in which the amount of frost heave is calculated using a segregation potential model and considering creep effects of the frozen soil. In addition, a computational method for the temperature field around a pipeline was proposed so that the frozen depth and temperature variation gradient could be obtained. Using the procedure proposed in this paper, stress/strain can be calculated according to the temperature on the surface of soil and in a pipeline. The result shows the characteristics of deformation and loading of a pipeline subjected to differential frost heave. In general, the methods and results in this paper can provide a reference for the design, construction and operation of pipelines in permafrost areas.


1989 ◽  
Vol 26 (2) ◽  
pp. 306-312 ◽  
Author(s):  
M. W. Smith ◽  
D. E. Patterson

Observations made using a system of ring magnets have provided a detailed picture of differential soil strain associated with frost heaving at a field scale. The results reveal the evolution of heave as freezing advances through the soil and the variation of soil strain with depth and time, and with soil temperature conditions. The results indicate that soil strain characteristically continues within frozen soil, sustained, it is proposed, by continuing water migration into the frozen soil. Consequently a considerable thickness of frozen soil appears to be actively involved with moisture movement and ice accumulation during frost heaving. The observations support the view that frost heave generally depends in a complex manner on the thermodynamic conditions of temperature and water and ice pressures as they are modified by the rheological properties of the soil. Key words: frost heave, differential soil strain, frost heave measurement.


Author(s):  
Andrei Alekseev

The article is devoted to the study of the interaction of a single pile with freezing heaving soil. The calculation of the pile loading area by the normal pressure of frost heaving is proposed. The cases of pile behavior under the influence of frost heave on it depending on the value of the heave pressure, the freezing forces of the frozen soil and the pile, and the adhesion forces of the anchored part of the pile are considered. The calculation of the radius of the cylinder shifting under the action of soil heaving is given.


Author(s):  
Bill Liu ◽  
Jack Crooks ◽  
J. F. (Derick) Nixon ◽  
Joe Zhou

A buried pipeline is subject to a variety of internal and external loads, one of which is the load induced by relative movements between the pipeline and the surrounding soils. Frost heave is one of the potential mechanisms that induce the relative movement for buried pipelines of chilled gas. The magnitude of the loads due to frost heave depends upon the amount of heaving and the load-displacement characteristics of the surrounding frozen soils, i.e., the uplift resistance of the frozen soils. Under the sponsorship of Pipeline Research Council International (PRCI), laboratory uplift tests have been carried out to study the load-displacement characteristics of a frozen soil and to assess the impact of loading rate, ice content and freezing direction. In addition to the measurements of the load and displacement of the pipe, deformations of the soil surface were also monitored at various locations. Parallel to the uplift tests, a series of laboratory geo-mechanical tests were conducted to define stiffness, tensile strain limits and time-dependent behavior of the frozen soil. Examples of the uplift test results are presented in the paper, together with detailed descriptions of soil material and test conditions. It is noted that quantitative data on uplift resistance are considered proprietary and will not be presented in this paper; however, detailed data may be obtained from technical publications of PRCI. Observations during the test with respect to the development of cracks in the frozen soil will be discussed. The load-displacement relationships measured in the uplift tests, together with the geo-mechanical properties of the frozen soil, will be used to the development and calibration of a numerical model, which will be presented in a separate technical paper to IPC2004.


Author(s):  
Yongxing Zhang ◽  
Ting Zhang ◽  
Ping Yang

Artificial freezing method is commonly adopted for reinforcingend soil mass of shield tunnel in the weak and rich aqueousformation, which is expected to prevent the construction riskin the originating and arriving of shield machine, whereas thearrangement of freezing pipes is sometimes varied due to variouscomplex limitations, and the corresponding frost-heavingcharacteristics of ground surface also differs from others. Inthis paper, a case of artificial freezing end soil mass with cupshape arrangement of horizontal freezing pipes is studied byfield investigation and numerical analysis, in which a numericalmodel coupled with water-heat-force interactions is proposedfor appropriately evaluating the frost-heaving characteristicsof ground surface in artificial freezing method. Theresults demonstrate that all the considered factors on brinetemperature, buried depth and cup bottom thickness have significantlyinfluences of frost-heaving characteristics of groundsurface in the artificial ground freezing (AGF) with cup shapearrangement of horizontal freezing pipes, in which the frostheave displacement of horizontal-cup-shape frozen groundsurface is increased with the increasing brine temperature andburied depth, whereas that is decreased with the increasing cupbottom thickness.


2013 ◽  
Vol 353-356 ◽  
pp. 2445-2449
Author(s):  
Xiang Min Qu ◽  
Hua Zhong ◽  
Xiu Fen Wang ◽  
Bin Zhang

Frost heaving damage of water conservancy project is widespread. In order to research the failure problems of hydraulic soil slope in dark seasonal frozen soil region, remote monitor and manual observation is carried out combined with field test section layout, which including air temperature, earth temperature, frozen depth, the amount of frost heaving and layered water content. It is researched that the rule of frost heave parameters variation and the damage of soil slope during freeze-thaw cycling. That offers theoretical basis and reference for construction of water conservancy project and guidance for engineering practice.


Author(s):  
YoungSeok Kim ◽  
Seung-Seo Hong ◽  
Jung-Hee Park ◽  
Jae Mo Kang ◽  
Jong-Sub Lee

The second scientific Antarctica station of South Korea is under construction at Terra Nova Bay located in east Antarctica. The objective of this study is the evaluation of the frost heave susceptibility of soils sampled from the second station site by performing laboratory frost heaving tests. Experiments are carried out with the soil specimens taken from five different areas at Terra Nova Bay. Test specimens are frozen with constant temperatures at the top and bottom of the specimen at −17 °C and 4 °C, respectively. In addition, grain size analyses and unfrozen water tests are also performed for monitoring the characteristics of the water contained in the permafrost. Frost susceptibility is evaluated by standard methods recommended in UK, US and Japan. Experimental results show that the more the fine contents exist in soils, the more frost heave occurs. The result denotes that grain size has a significant effect on frost heave. The results suggest that the frost heaving susceptibility of the frozen ground at the Antarctic site would be effectively evaluated through the grain size and the frost heaving parameters.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 979 ◽  
Author(s):  
Fuqiang Guo ◽  
Haibin Shi ◽  
Manjin Cheng ◽  
Wenhui Gao ◽  
Hongzhi Yang ◽  
...  

The damages resulting from frost heaving are the main causes of channel destruction in seasonal frozen soil regions. Over the years, many experimental studies have been performed regarding the channel anti-frost heaving in the Hetao irrigation area. However, there have been few experimental research studies conducted regarding the insulation and anti-frost heave effects of polystyrene boards (EPS) of different thicknesses. Therefore, in order to explore the insulation mechanism and anti-frost heave effects of precast EPS laid under the conditions of different thicknesses, an anti-frost heave test field was established in the Hetao irrigation area for the examination of the ground temperatures, frozen depths, frost heave amounts, and water content change rules. This study’s results showed that, for the laid EPS with thicknesses between 2 and 12 cm, the frost-heave reduction rate ranged from 53.2% to 92.6%; total accumulated temperature warming ranged from 248.65% to 565.93%; and the frozen depth reduction rate was between 59.8% and 75.9%. It was determined that the EPS per cm additions could effectively improve the ground temperatures at a buried depth of 30 cm by 0.78 °C, and reduce the frozen depth by 10.1 cm. Then, by comprehensively considering the positive economic and insulation effects, it was determined that the most appropriate thickness of the EPS laid under the precast concrete slabs in the Hetao irrigation area of Inner Mongolia was 8–10 cm.


2013 ◽  
Vol 831 ◽  
pp. 78-82
Author(s):  
Jun Lei Tian ◽  
Xiao Hui Zeng ◽  
Yan Ke Yang ◽  
Jian Qiang Cheng

Ha Tai high speed rail is a high-speed railway in cold region of China. The design criteria is very strict. There is many frozen soil over cold region. The research how to reduce the amount of subgrade frost heaving over Ha Tai high speed rail is of great significance.We use a frost heave model to simulate the subgrade frost heaving in the paper.We research how the fine power content and water content influence the frost heave amount of graded crushed stone by contrast test.The result shows that the fine power content and the water content have great influence on the frost heave amount of graded crushed stone .The frost heave ratio increases with the fine powder content and the water content.


Author(s):  
Bill Liu ◽  
Karen Moffitt ◽  
J. F. (Derick) Nixon ◽  
Joe Zhou ◽  
Yuxing Xiao

A buried pipeline is subject to a variety of internal and external loads, one of which is the load induced by relative movement between the pipeline and the surrounding soils. Frost heave is one of the potential mechanisms that induce the relative movement for buried pipelines of chilled gas. The magnitude of the loads due to frost heave depends upon the amount of heaving and the load-displacement characteristics of the surrounding frozen soils, i.e., the uplift resistance of the soils. Under the sponsorship of Pipeline Research Council International (PRCI), laboratory uplift tests have been carried out to study the load-displacement characteristics of a frozen soil. In parallel, a series of laboratory geo-mechanical tests were conducted to define stiffness, tensile strain limits and time-dependent features of the frozen soil. A numerical model, using the geo-mechanical properties of the frozen soil as input parameters, has been developed. The numerical model is intended to be used as a tool primarily for sensitivity analyses and scaling of the results of the laboratory uplift tests to field operations, which are anticipated to have pipe diameters in a range of 5 to 10 times of the laboratory tests. A description of the numerical model is provided in the paper. The load-displacement relationships and failure mechanisms represented in the numerical model are compared with the measurements and observations made during the laboratory uplift tests (quantitative data on uplift resistance are considered proprietary and will not be presented, but detailed data may be obtained from technical publications of PRCI). After being calibrated, the numerical model can be used for sensitivity analyses, and also potentially used as a design tool for pipelines in discontinuous permafrost.


Sign in / Sign up

Export Citation Format

Share Document