Theoretical prediction of rutting in flexible pavement subgrades
The theoretical model for predicting the cyclic response of soils is extended to handle the generation and dissipation of pore-water pressures and to predict the rutting of the subgrade of a flexible pavement. The model utilizes multiyield surfaces and the concepts of critical state mechanics to predict the permanent deformation of the subgrade under vehicular loading. The theoretical solution also considers the effects of the drainage characteristics of the subgrade soil on the rate of development of the permanent deformation. Experimental verification of the model concepts are presented for a drained cyclic load test on Ottawa sand and for undrained cyclic loading on Newfield clay using published experimental data. An illustrative example is given for the prediction of rutting in a silty clay subgrade. The model parameters for the silty clay are obtained from triaxial and consolidation tests. These parameters are then put into a computer program that determines the rut depth, pore-water pressure, and the ratio of the vertical deformation and the rut depth as functions of the number of vehicular loads for a flexible pavement for various conditions of drainage ranging from undrained to fully drained. The role of the coefficient of consolidation of the subgrade in controlling the rate of development of the rut depth is highlighted. Key words : critical state soil mechanics, multiyield surfaces, rutting, silty clay subgrade, drainage, vehicular loading.