A Comparison of Predicted and Measured Friction Factors for Turbulent Flow Through Rectangular Ducts

1962 ◽  
Vol 84 (1) ◽  
pp. 82-88 ◽  
Author(s):  
J. P. Hartnett ◽  
J. C. Y. Koh ◽  
S. T. McComas

The friction coefficient for both laminar and turbulent flow through rectangular channels was analytically and experimentally studied. The analytic expression for the pressure loss in fully established laminar flow was verified by experiment. In turbulent flow, the method of Deissler and Taylor was used to calculate the friction coefficient. The calculated and measured results were in agreement for ducts having large aspect ratios. At aspect ratios less than 5:1, the predicted values of the friction factors were lower than the experimental data, with a maximum difference of 12 per cent evident for the square duct. It was found that the circular-tube correlation accurately predicts the friction coefficient for flow through rectangular ducts of any aspect ratio for Reynolds numbers between 6 × 103 and 5 × 105. Hydrodynamic entrance-length results are also presented in the laminar and turbulent flow ranges for both a smooth and an abrupt entrance configuration.

1993 ◽  
Vol 115 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Ying-Jong Hong ◽  
Shou-Shing Hsieh

The combined effects of rib alignment and channel aspect ratio on the distributions of the local heat transfer coefficient and on the friction factors for developing and fully developed flow in short square and rectangular channels (L/DH = 13.5–18) with a pair of opposite rib-roughened walls were determined for Reynolds numbers ranging from 13,000 to 130,000. The channel aspect ratios are 1/2 and 1 and the rib alignment configurations are arranged as staggered and in-line types, respectively. The pitch to rib height ratio is 5.31 for all test channels. The local heat transfer distributions on the bottom rib-roughened wall from the channel entrance to the downstream region are presented and discussed. Semi-empirical heat transfer and friction correlations are developed, and the results are compared with those of previous investigations for similarly configured channels, which were roughened by regularly spaced transverse ribs.


Author(s):  
Xiao Tu ◽  
Pega Hrnjak

The current work focused on determining the friction factors in five rectangular channels with hydraulic diameters varying from 69.5 to 304.7 μm and with aspect ratios changing from 0.09 to 0.24. The single-channel test sections were carefully designed such that the friction factors could be determined accurately from the experimental data. R134a liquid and vapor were used as the testing fluids. During the experiments, the Reynolds numbers were varied between 112 and 9180. The measured friction factors were compared with the conventional correlations. The results support such a general agreement in the literature that the flow friction in microchannels may be different from the conventional results. However, a more important finding is that when the channel surface roughness was low, even for the smallest channel tested, both the laminar friction factor and the critical Reynolds number approach the conventional values. In the turbulent region, the surface roughness has great effect on the flow friction even for the smoothest channel tested (Ra/Dh = 0.14%).


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Raquel Faria ◽  
Almerindo D. Ferreira ◽  
A. M. G. Lopes ◽  
Antonio C. M. Sousa

In this work, the suitability of pressure probes, commonly known as Irwin probes, to determine the local wall shear stress was evaluated for steady turbulent flow in rectangular ducts. Pressure measurements were conducted in the fully developed flow region of the duct and both the influence of duct aspect ratio (AR) (from 1:1.03 to 1:4.00) and Reynolds number (from 104 to 9 × 104) on the mean characteristics of the flow were analyzed. In addition, the sensitivity of the longitudinal and transversal placement of the Irwin probes was verified. To determine the most appropriate representation of the experimental data, three different characteristic lengths (l*) to describe Darcy's friction coefficient were investigated, namely: hydraulic diameter (Dh), square root of the cross section area (√A), and laminar equivalent diameter (DL). The comparison of the present experimental data for the range of tested Re numbers against the results for turbulent flow in smooth circular tubes indicates similar trends independently of the AR. The selection of the appropriate l* to represent the friction coefficient was found to be dependent on the AR of the duct, and the three tested scales present similar performance. However, the hydraulic diameter, being the commonly employed to compute turbulent flow in rectangular ducts, is the selected characteristic length scale to be used in the present study. A power function-based calibration equation is proposed for the Irwin probes, which is valid for the range of ARs and Reynolds numbers tested.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


2014 ◽  
Vol 1025-1026 ◽  
pp. 355-360 ◽  
Author(s):  
Ahmed El-Shenawy ◽  
Mohamed Shehadeh

The work of this paper proposes a new technique for estimating and predicting erosion corrosion rate for laminar and turbulent flow in pipes. The technique depends on the neural networks Artificial Intelligent algorithms. Based on experimental results, which was applied to A 106 carbon-steel pipes, the networks are trained. Four velocities (Reynolds numbers) are used for laminar and four for turbulent regimes. The experiments also used seawater containment three different concentrations of sand. For each experiment the iron losses were measured six times in three hours’ time interval. The proposed estimating/predicting system managed to find values between the readings as well as predict the behavior of the erosion corrosion rate for extra three hours. The estimated/predicted results have been developed to find the transient zone between the Laminar and Turbulent flow regimes and investigating its effects on the erosion-corrosion behavior.


2020 ◽  
Author(s):  
Chunlin Wu ◽  
Spyros A. Kinnas

Abstract A distributed viscous vorticity equation (VISVE) method is presented in this work to simulate the laminar and turbulent flow past a hydrofoil. The current method is proved to be more computationally efficient and spatially compact than RANS (Reynolds-Averaged Navier-Stokes) methods since this method does not require unperturbed far-field boundary conditions, which leads to a small computational domain, a small number of mesh cells, and consequently much less simulation time. To model the turbulent flow, a synchronous coupling scheme is implemented so that the VISVE method can resolve the turbulent flow by considering the eddy viscosity in the vorticity transport equation, and the eddy viscosity is obtained by coupling VISVE with the existing turbulence model of OpenFOAM, via synchronous communication. The proposed VISVE method is applied to simulate both the laminar flow at moderate Reynolds numbers and turbulent flow at high Reynolds numbers past a hydrofoil. The velocity and vorticity calculated by the coupling method agree well with the results obtained by a RANS method.


Author(s):  
A. C. Verkaik ◽  
A. C. B. Bogaerds ◽  
F. Storti ◽  
F. N. van de Vosse

When blood is pumped through the aortic valves, it has a time dependent flow with a relatively high speed, resulting in Reynolds numbers between 1500 and 3000. Hence, flow is in the transitional regime between laminar and turbulent flow. Transitional flow contains small scale fluctuations, see Figure 1, and may result in local high deformation rates.


Sign in / Sign up

Export Citation Format

Share Document