UV photoelectron spectroscopic and computational study of 7-substituted cycloheptatrienes

2008 ◽  
Vol 86 (5) ◽  
pp. 444-450 ◽  
Author(s):  
T Bajorek ◽  
N H Werstiuk

The He(I) photoelectron (PE) spectra of cycloheptatriene (1), 7-methylcycloheptatriene (2), 7-methoxycycloheptatriene (3), 7-methylthiocycloheptatriene (4), and 7-diemthylaminocycloheptatriene (5) were recorded and interpreted using MO energies and ionization potentials acquired from B3PW91 calculations. Partial simulated PE spectra were in good agreement with the experimental results. The axial and equatorial conformers have distinct PE spectra as illustrated by simulation. The PE spectra of 2, 3, and 5 are representative of the equatorial conformers, while the PE spectrum of 4 was in accord with a 1:1 mixture of equatorial and axial conformational isomers based on spectral simulation. The calculated free energy differences between the equatorial and axial conformers are in the order of 2 kcal mol–1 (1 cal = 4.184 J) for compounds 2, 3, and 5, where the equatorial conformational isomer is lowest in energy. In the case of 4, the equatorial conformer was only marginally lower in energy than its axial counterpart, where the free energy difference is 0.1 kcal mol–1.Key words: 7-substituted cycloheptatrienes, He(I) photoelectron spectroscopy, B3PW91, spectral simulation.

2020 ◽  
Vol 7 (4) ◽  
pp. 200183
Author(s):  
Fabiano Corsetti ◽  
Alvaro Alonso-Caballero ◽  
Simon Poly ◽  
Raul Perez-Jimenez ◽  
Emilio Artacho

The type 1 pilus is a bacterial filament consisting of a long coiled proteic chain of subunits joined together by non-covalent bonding between complementing β -strands. Its strength and structural stability are critical for its anchoring function in uropathogenic Escherichia coli bacteria. The pulling and unravelling of the FimG subunit of the pilus was recently studied by atomic force microscopy experiments and steered molecular dynamics simulations (Alonso-Caballero et al. 2018 Nat. Commun . 9 , 2758. (doi:10.1038/s41467-018-05107-6)). In this work, we perform a quantitative comparison between experiment and simulation, showing a good agreement in the underlying work values for the unfolding. The simulation results are then used to estimate the free energy difference for the detachment of FimG from the complementing strand of the neighbouring subunit in the chain, FimF. Finally, we show that the large free energy difference for the unravelling and detachment of the subunits which leads to the high stability of the chain is entirely entropic in nature.


1981 ◽  
Vol 59 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Yan K. Lau ◽  
P. Kebarle

The equilibria RNH3+(H2O)n−1 + H2O = RNH3+(H2O)n were measured for R = CH3, C2H5, and CF3CH2 from n = 1 to n = 3 with a pulsed electron beam high ion source pressure mass spectrometer. The proton and hydrate transfer equilibria CH3NH3+(H2O)n + C2H5NH2 = CH3NH2 + C2H5NH3+(H2O)n were measured for n = 0 to n = 3. These data allow the evaluation of ΔH0 and ΔG0 for the reactions: R0NH3+(H2O)n + RNH3+ = R0NH3+ + RNH3+(H2O)n. ΔH0 = δΔH00,n(RNH3+), ΔG = δΔG00,n(RNH3+). These data are compared with δΔE0,3 (STO-3G) evaluated by Hehre and Taft. In general good agreement is observed at n = 3. The δΔH00,3(RNH3+) ≈ δΔE0,3(RNH3+) are also found close to the ion hydration free energy difference in aqueous solutions.


1969 ◽  
Vol 47 (3) ◽  
pp. 429-431 ◽  
Author(s):  
Gordon Wood ◽  
E. P. Woo ◽  
M. H. Miskow

By the low temperature nuclear magnetic resonance integration method the standard free energy difference between the diequatorial and the diaxial forms of 1-H,4-H-trans-1,4-di(trifluoroacetoxy)-cyclohexane-d8 was found to be 77 ± 5 cal/mole. The conformational free energy (−ΔG0) of the trifluoroacetoxy group in the monosubstituted cyclohexane was 485 ± 4 cal/mole at the same temperature. The non-additivity of the −ΔG0 values is discussed in terms of transannular electrostatic interaction.


2001 ◽  
Vol 79 (8) ◽  
pp. 1284-1292 ◽  
Author(s):  
Saul Wolfe ◽  
Anthony V Buckley ◽  
Noham Weinberg

A combination of MM3-level molecular mechanics calculations and PM3-level semiempirical molecular orbital calculations has been employed, in conjunction with an algorithm for the comprehensive conformational analysis of cyclic compounds, to obtain 1202 unique 1,3,9-cyclotetradecatriene conformations, distributed over the six possible geometrical isomers, and 70 unique transannular Diels–Alder transition structures leading to the six possible stereoisomeric tricyclic olefins. A kinetic analysis that takes into account all minima of a given geometrical isomer and all transition structures leading to the same tricyclic product leads to a free energy of activation that is almost the same as the free energy difference between the lowest minimum and the lowest transition structure (the Curtin–Hammett principle). A substantial template effect, mainly entropic in origin, is found when the transannular reactions are compared to the Diels–Alder reactions of the cognate 2,4-hexatrienes with the 2-butenes. Although the cyclization of the trans-cis-trans triene favours the cis-anti-cis over the trans-anti-trans product by more than 20 kcal mol–1, the situation is reversed in the acyclic reaction. A cyclic triene that can cyclize directly to a trans-anti-trans tricycle can therefore be proposed.Key words: molecular models, Deslongchamps, Takahashi, trans-anti-trans tricycle, MM3, PM3, transition states.


2010 ◽  
Vol 63 (3) ◽  
pp. 357 ◽  
Author(s):  
James C. Reid ◽  
Stephen R. Williams ◽  
Debra J. Searles

Measuring free energy differences between states is of fundamental importance to understanding and predicting the behaviour of thermodynamic systems. The Jarzynski equality provides a method for measuring free energy differences using non-equilibrium work paths and represents a major advance of modern thermodynamics. Recent work has extended the theory by using work paths in both directions between the states to improve the accuracy of the free energy measurement. It has also been shown that the Jarzynski equality can be adapted to measure the free energy of quasi-equilibrium systems such as glasses. Here we combine these advances to accurately measure the free energy difference between a glassy state and equilibrium using bi-directional methods. For this system however, the result is not as accurate as that achieved using the work evaluated in a single direction.


1997 ◽  
Vol 481 ◽  
Author(s):  
N. Clavaguera ◽  
M.T. Clavaguera-Mora

ABSTRACTA theoretical analysis of the transformation kinetics which accounts for nuclei, either prequenched or created homogeneously, and whose growth are controlled by diffusion is presented. The change in growth habit intervening during the transformation is analysed in terms of the evolution of the free energy difference between the precipitate and the matrix at the interface, ΔG1. In the Avrami formalism, this quantity accounts for the competition between interface and diffusion controlled growth whereas the nucleation events are driven by the free energy difference between the precipitate and the bulk matrix. Competition and selection of precipitate phases in highly undercooled melts using the CALPHAD approach for the evaluation of the free energies and the changes in diffusivity with concentration are analysed. Experimental vs. calculated data are discussed in some rapidly solidified metallic systems.


Sign in / Sign up

Export Citation Format

Share Document