scholarly journals Entropic bonding of the type 1 pilus from experiment and simulation

2020 ◽  
Vol 7 (4) ◽  
pp. 200183
Author(s):  
Fabiano Corsetti ◽  
Alvaro Alonso-Caballero ◽  
Simon Poly ◽  
Raul Perez-Jimenez ◽  
Emilio Artacho

The type 1 pilus is a bacterial filament consisting of a long coiled proteic chain of subunits joined together by non-covalent bonding between complementing β -strands. Its strength and structural stability are critical for its anchoring function in uropathogenic Escherichia coli bacteria. The pulling and unravelling of the FimG subunit of the pilus was recently studied by atomic force microscopy experiments and steered molecular dynamics simulations (Alonso-Caballero et al. 2018 Nat. Commun . 9 , 2758. (doi:10.1038/s41467-018-05107-6)). In this work, we perform a quantitative comparison between experiment and simulation, showing a good agreement in the underlying work values for the unfolding. The simulation results are then used to estimate the free energy difference for the detachment of FimG from the complementing strand of the neighbouring subunit in the chain, FimF. Finally, we show that the large free energy difference for the unravelling and detachment of the subunits which leads to the high stability of the chain is entirely entropic in nature.

2008 ◽  
Vol 86 (5) ◽  
pp. 444-450 ◽  
Author(s):  
T Bajorek ◽  
N H Werstiuk

The He(I) photoelectron (PE) spectra of cycloheptatriene (1), 7-methylcycloheptatriene (2), 7-methoxycycloheptatriene (3), 7-methylthiocycloheptatriene (4), and 7-diemthylaminocycloheptatriene (5) were recorded and interpreted using MO energies and ionization potentials acquired from B3PW91 calculations. Partial simulated PE spectra were in good agreement with the experimental results. The axial and equatorial conformers have distinct PE spectra as illustrated by simulation. The PE spectra of 2, 3, and 5 are representative of the equatorial conformers, while the PE spectrum of 4 was in accord with a 1:1 mixture of equatorial and axial conformational isomers based on spectral simulation. The calculated free energy differences between the equatorial and axial conformers are in the order of 2 kcal mol–1 (1 cal = 4.184 J) for compounds 2, 3, and 5, where the equatorial conformational isomer is lowest in energy. In the case of 4, the equatorial conformer was only marginally lower in energy than its axial counterpart, where the free energy difference is 0.1 kcal mol–1.Key words: 7-substituted cycloheptatrienes, He(I) photoelectron spectroscopy, B3PW91, spectral simulation.


1981 ◽  
Vol 59 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Yan K. Lau ◽  
P. Kebarle

The equilibria RNH3+(H2O)n−1 + H2O = RNH3+(H2O)n were measured for R = CH3, C2H5, and CF3CH2 from n = 1 to n = 3 with a pulsed electron beam high ion source pressure mass spectrometer. The proton and hydrate transfer equilibria CH3NH3+(H2O)n + C2H5NH2 = CH3NH2 + C2H5NH3+(H2O)n were measured for n = 0 to n = 3. These data allow the evaluation of ΔH0 and ΔG0 for the reactions: R0NH3+(H2O)n + RNH3+ = R0NH3+ + RNH3+(H2O)n. ΔH0 = δΔH00,n(RNH3+), ΔG = δΔG00,n(RNH3+). These data are compared with δΔE0,3 (STO-3G) evaluated by Hehre and Taft. In general good agreement is observed at n = 3. The δΔH00,3(RNH3+) ≈ δΔE0,3(RNH3+) are also found close to the ion hydration free energy difference in aqueous solutions.


2021 ◽  
Vol 7 (2) ◽  
pp. 69-75
Author(s):  
S. P. Khanal ◽  
B. Poudel ◽  
R. P. Koirala ◽  
N. P. Adhikari

In the present work, we have used an alchemical approach for calculating solvation free energy of protonated lysine in water from molecular dynamics simulations. These approaches use a non-physical pathway between two end states in order to compute free energy difference from the set of simulations. The solute is modeled using bonded and non-bonded interactions described by OPLS-AA potential, while four different water models: TIP3P, SPC, SPC/E and TIP4P are used. The free energy of solvation of protonated lysine in water has been estimated using thermodynamic integration, free energy perturbation, and Bennett acceptance ratio methods at 310 K temperature. The contributions to the free energy due to van der Waals and electrostatics parameters are also separately computed. The estimated values of free energy of solvation using different methods are in well agreement with previously reported experimental value within 14 %.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard J. Smith ◽  
Fernando Pérez-Cota ◽  
Leonel Marques ◽  
Matt Clark

AbstractBrillouin light scattering (BLS) is an emerging method for cell imaging and characterisation. It allows elasticity-related contrast, optical resolution and label-free operation. Phonon microscopy detects BLS from laser generated coherent phonon fields to offer an attractive route for imaging since, at GHz frequencies, the phonon wavelength is sub-optical. Using phonon fields to image single cells is challenging as the signal to noise ratio and acquisition time are often poor. However, recent advances in the instrumentation have enabled imaging of fixed and living cells. This work presents the first experimental characterisation of phonon-based axial resolution provided by the response to a sharp edge. The obtained axial resolution is up to 10 times higher than that of the optical system used to take the measurements. Validation of the results are obtained with various polymer objects, which are in good agreement with those obtained using atomic force microscopy. Edge localisation, and hence profilometry, of a phantom boundary is measured with accuracy and precision of approximately 60 nm and 100 nm respectively. Finally, 3D imaging of fixed cells in culture medium is demonstrated.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1756
Author(s):  
Xuchang Su ◽  
Zhi He ◽  
Lijun Meng ◽  
Hong Liang ◽  
Ruhong Zhou

Single-molecule techniques such as electron tunneling and atomic force microscopy have attracted growing interests in protein sequencing. For these methods, it is critical to refine and stabilize the protein sample to a “suitable mode” before applying a high-fidelity measurement. Here, we show that a planar heterostructure comprising boronic graphene (BC3) and nitrogenized graphene (C3N) sandwiched stripe (BC3/C3N/BC3) is capable of the effective stretching and confinement of three types of intrinsically disordered proteins (IDPs), including amyloid-β (1–42), polyglutamine (Q42), and α-Synuclein (61–95). Our molecular dynamics simulations demonstrate that the protein molecules interact more strongly with the C3N stripe than the BC3 one, which leads to their capture, elongation, and confinement along the center C3N stripe of the heterostructure. The conformational fluctuations of IDPs are substantially reduced after being stretched. This design may serve as a platform for single-molecule protein analysis with reduced thermal noise.


2021 ◽  
Author(s):  
Hiroki Koide ◽  
Noriyuki Kodera ◽  
Shveta Bisht ◽  
Shoji Takada ◽  
Tsuyoshi Terakawa

The condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the so-called hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown, potentially due to its conformational plasticity. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. The conformational change of the hinge domain might be essential for the dsDNA binding regulation and play important roles in condensin-mediated DNA-loop extrusion.


Sign in / Sign up

Export Citation Format

Share Document