Kinetic and mechanistic studies of the reactions of diarylgermylenes and tetraaryldigermenes with carbon tetrachloride

2011 ◽  
Vol 89 (2) ◽  
pp. 241-255 ◽  
Author(s):  
Lawrence A. Huck ◽  
William J. Leigh

The mechanisms of the reactions of diphenylgermylene (GePh2) with CCl4 in hydrocarbon solvents and in THF solution have been studied, employing 3,4-dimethyl-1,1-diphenylgermacyclopent-3-ene (6a) and 1,1-diphenylgermacyclobutane (17) as photochemical precursors to GePh2. In hydrocarbon solvents, the reaction produces Ph2GeCl2 (10) and Ph2Ge(Cl)CCl3 (12) in a ratio of 10:12 ≈ 7, along with a variety of other radical-derived products and small amounts of Ph2GeH(D)Cl (11), which is formed partly by reaction of GePh2 with adventitious HCl. The reaction is much cleaner in THF, where 12 is formed as the major product (10:12 ≈ 0.8); a similar product distribution is obtained in hexanes containing 0.05 mol/L THF, while 12 is the exclusive product in hexanes containing 3 mmol/L NEt3. Rate constants for the reactions of CCl4 with GePh2 and five ring-substituted derivatives were determined by laser flash photolysis, as well as Arrhenius parameters for reaction of the parent (GePh2), in the two solvents. The reactions of GePh2 with CCl4 and CHCl3 have also been studied in 3-methylpentane solution at 78–90 K. Different reaction mechanisms are clearly operative in hydrocarbon and complexing solvents, but both involve modest charge donation from germanium to the substrate in the transition state for the rate-determining step. For the reaction in hydrocarbon solvents, the data are consistent with inner-sphere electron transfer following or in concert with weak Lewis acid–base complexation. A similar mechanism is proposed for the reaction in THF solution, in competition with a second involving nucleophilic attack of the germylene–THF complex at a chlorine atom of the substrate. Rate constants were also determined for reaction of CCl4 with the corresponding tetraaryldigermenes at low halocarbon concentrations in hexanes, along with Arrhenius parameters for the parent (Ge2Ph4). These reactions also proceed via initial Cl-atom abstraction, based on the identity of the products formed in the reaction of CCl4 with tetramesityldigermene.

2006 ◽  
Vol 84 (7) ◽  
pp. 934-948 ◽  
Author(s):  
William J Leigh ◽  
Ileana G Dumbrava ◽  
Farahnaz Lollmahomed

Photolysis of 1,3,4-trimethyl-1-phenylgermacyclopent-3-ene (5) in hydrocarbon solvents containing isoprene, methanol, or acetic acid affords 2,3-dimethyl-1,3-butadiene (DMB) and the expected trapping products of methyl phenylgermylene (GeMePh) in chemical yields exceeding 90%. The germylene has been detected in hexane solution by laser flash photolysis as a short-lived species (τ ~ 2 µs) exhibiting a UV-vis absorption spectrum centered at λmax = 490 nm. It decays with second-order kinetics and a rate constant close to the diffusion-controlled limit, with the concomitant growth of a second longer-lived transient (λmax = 420 nm) that is assigned to a mixture of (E)- and (Z)-1,2-dimethyl-1,2-diphenyldigermene (4). Absolute rate constants have been determined for the reactions of the germylene with primary and tertiary amines (n-BuNH2 and Et3N, respectively), acetic acid (AcOH), a terminal alkyne and alkene, isoprene, DMB, CCl4, and the group 14 hydrides Et3SiH and Bu3SnH. GeMePh is slightly more reactive than GePh2 towards all the reagents studied in this work; both are significantly less reactive than GeMe2 toward the same substrates. Absolute rate constants for the reactions of 4 have also been measured or assigned upper limits in every case and are compared to previously reported values for tetraphenyl- and tetramethyl-digermene with the same reagents.Key words: germylene, digermene, kinetics, laser flash photolysis, germirane, germirene, vinylgermirane, complex, UV–vis spectrum, insertion, addition.


2010 ◽  
Vol 88 (6) ◽  
pp. 493-499 ◽  
Author(s):  
Sarah Ward ◽  
Tammy Messier ◽  
Matthew Lukeman

The 9-(4-methoxyphenyl)-9-fluorenyl cation (2) has been generated in 100% water by laser flash photolysis of 9-(4-methoxyphenyl)-9-fluorenol (3), representing the first observation of a 9-fluorenyl cation in this solvent with lifetimes in the microsecond timescale. The relatively long lifetime permitted quenching studies with a number of anionic nucleophiles, and bimolecular rate constants for each were determined. For both bromide and iodide, rate data suggest that an equilibrium between the cation and trapped product is rapidly established, followed by slower, irreversible trapping of the cation by water. The bimolecular rate constants obtained show that the generated 9-fluorenyl cation is significantly more reactive towards nucleophilic attack, by two orders of magnitude, than related triarylmethyl cations that lack the 4n π-system, lending support to the characterization of fluorenyl cations as antiaromatic.


Author(s):  
M.A. Buntine ◽  
G.J. Gutsche ◽  
W.S. Staker ◽  
M.W. Heaven ◽  
K.D. King ◽  
...  

The technique of laser flash photolysis/laser absorption has been used to obtain absolute removal rate constants for singlet methylene,


2018 ◽  
Vol 20 (34) ◽  
pp. 22218-22227 ◽  
Author(s):  
N. U. M. Howes ◽  
Z. S. Mir ◽  
M. A. Blitz ◽  
S. Hardman ◽  
T. R. Lewis ◽  
...  

Kinetics of CH2OO + SO2 confirmed over a wide range of [SO2]. Acetaldehyde observed as a major product of the reaction of CH3CHOO + SO2.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 1148-1161 ◽  
Author(s):  
Latifa Chahoua ◽  
Alain Vigroux ◽  
Yvonne Chiang ◽  
James C Fishbein

A study of the solvolysis of a series of (N-nitrosomethylamino)arylmethyl esters and azides and the products of nucleophilic trapping of the corresponding N-nitrosiminium ion intermediates in aqueous media, 25°C, ionic strength 1 M is reported. Structure-reactivity data for the forward and reverse reactions have been obtained. In three cases, the rate constants for reactions of the cations with nucleophiles have been measured directly by laser flash photolysis. The data allow a comparison of the degree to which the N-methyl-N-nitroso functionality enhances cation stability from a thermodynamic and kinetic perspective. It has been possible to deduce that the carbon basicity of azide ion is less than 1 kcal/mol greater than that of acetate ion.Key words: nitrosiminium ions, α-acetoxynitrosamines, carbocations, iminium ions, nucleophilicity.


1993 ◽  
Vol 115 (18) ◽  
pp. 8340-8344 ◽  
Author(s):  
J. C. Scaiano ◽  
M. Barra ◽  
M. Krzywinski ◽  
R. Sinta ◽  
G. Calabrese

1990 ◽  
Vol 68 (3) ◽  
pp. 375-382 ◽  
Author(s):  
Robert A. McClelland ◽  
V. M. Kanagasabapathy ◽  
Steen Steenken

Laser flash photolysis in aqueous basic solutions of the ortho acid derivatives 1-(phenyldimethoxymethyl)benzimidazole 2 and 4-bromo-1-(phenyldimethoxymethyl)imidazole 3 results in production of the phenyldimethoxymethyl cation, which has λmax at 260 nm. The cation decays in reactions with water (k = 9.9 × 104 s−1) and hydroxide ion (2.5 × 108 M−1 s−1) to finally yield methyl benzoate, whose formation was monitored at 234 nm. In solutions with pH 10–12, rate constants measured at this wavelength are the same as those obtained at 260 nm, but with pH > 13 and pH < 9, rate constants at 234 nm are smaller. With pH 9–10 and pH 12–13, single exponential kinetics are not observed at 234 nm. This behavior is interpreted in terms of a scheme where at each pH there are two consecutive first-order reactions, cation → phenyldimethoxyhydroxymethane (5) → ester, and the pH dependencies of the rate constants are such that they cross twice over the pH range of this study. The intermediate 5 is the tetrahedral intermediate formed in the methanolysis of methyl benzoate, and the 234-nm buildup at pH > 13 and pH < 9 directly measures its breakdown. At pH > 13 the rate constant is independent of pH with k = 9 × 106 s−1. This represents the rapid expulsion of methoxide from the conjugate base of 5. At pH < 9 the rate constants are proportional to hydroxide ion concentration, with [Formula: see text]. In these solutions the neutral intermediate predominates and the dependence on [OH−] of its rate of conversion to ester is interpreted in terms of breakdown of the anion and protonation of this species by water occurring at comparable rates. Thus, [Formula: see text] represents a situation where there is partial rate-limiting deprotonation of the neutral intermediate by hydroxide. The intermediate of this study bears a close resemblance to the tetrahedral intermediate of the hydrolysis of methyl benzoate. The observation that the anionic forms of such intermediates undergo breakdown at rates similar to those associated with the establishment of proton transfer equilibrium explains why the ester undergoes carbonyl oxygen exchange in base at a rate slower than hydrolysis. Keywords: tetrahedral intermediate, flash photolysis, ester hydrolysis.


1992 ◽  
Vol 70 (6) ◽  
pp. 1784-1794 ◽  
Author(s):  
E. O. Alonso ◽  
L. J. Johnston ◽  
J. C. Scaiano ◽  
V. G. Toscano

The photolysis of several substituted phenyl(naphthyl)methyl triphenylphosphonium chlorides has been examined using a combination of laser flash photolysis experiments and product studies. Both carbocation and radical intermediates have been characterized in the transient experiments, with the relative yields depending strongly on the solvent. For example, in alcohols, acetonitrile, or aqueous solvents cation formation predominates while acetonitrile/dioxane mixtures (5–10%) are required for the observation of radicals. Quantum yields for cation formation vary from 0.79 in methanol to 0.093 in 1:4 acetonitrile/dioxane, as measured by product studies and transient experiments, respectively. The addition of perchlorate salts leads to dramatic enhancements in the cation lifetimes; the effects are particularly pronounced for acetonitrile/dioxane mixtures where the cation yields also increase by factors of 3–4. In this case the effects are attributed primarily to replacement of chloride by perchlorate in the initial ion pairs. The combined data from both solvent and perchlorate salt effects on the cation lifetimes and yields suggest that the excited state of the phosphonium salt cleaves homolytically, followed by electron transfer within the initial radical/triphenylphosphine radical cation pair to generate carbocation, as opposed to direct heterolytic cleavage. The cation yields also indicate that back reaction to regenerate starting material, as well as product formation within the initial geminate cage, occur in some solvents. The effects of solvent and added perchlorate salts on the rate constants for reaction with nucleophiles have been examined. For example, rate constants that vary by an order of magnitude have been measured for quenching by azide ion in various aqueous acetonitrile and trifluoroethanol mixtures.


Sign in / Sign up

Export Citation Format

Share Document