scholarly journals Detailed mechanistic investigation into the S-nitrosation of cysteamine

2012 ◽  
Vol 90 (9) ◽  
pp. 724-738 ◽  
Author(s):  
Moshood K. Morakinyo ◽  
Itai Chipinda ◽  
Justin Hettick ◽  
Paul D. Siegel ◽  
Jonathan Abramson ◽  
...  

The nitrosation of cysteamine (H2NCH2CH2SH) to produce cysteamine-S-nitrosothiol (CANO) was studied in slightly acidic medium by using nitrous acid prepared in situ. The stoichiometry of the reaction was H2NCH2CH2SH + HNO2 → H2NCH2CH2SNO + H2O. On prolonged standing, the nitrosothiol decomposed quantitatively to yield the disulfide, cystamine: 2H2NCH2CH2SNO → H2NCH2CH2S–SCH2CH2NH2 + 2NO. NO2 and N2O3 are not the primary nitrosating agents, since their precursor (NO) was not detected during the nitrosation process. The reaction is first order in nitrous acid, thus implicating it as the major nitrosating agent in mildly acidic pH conditions. Acid catalyzes nitrosation after nitrous acid has saturated, implicating the protonated nitrous acid species, the nitrosonium cation (NO+) as a contributing nitrosating species in highly acidic environments. The acid catalysis at constant nitrous acid concentrations suggests that the nitrosonium cation nitrosates at a much higher rate than nitrous acid. Bimolecular rate constants for the nitrosation of cysteamine by nitrous acid and by the nitrosonium cation were deduced to be 17.9 ± 1.5 (mol/L)–1 s–1 and 6.7 × 104 (mol/L)–1 s–1, respectively. Both Cu(I) and Cu(II) ions were effective catalysts for the formation and decomposition of the cysteamine nitrosothiol. Cu(II) ions could catalyze the nitrosation of cysteamine in neutral conditions, whereas Cu(I) could only catalyze in acidic conditions. Transnitrosation kinetics of CANO with glutathione showed the formation of cystamine and the mixed disulfide with no formation of oxidized glutathione (GSSG). The nitrosation reaction was satisfactorily simulated by a simple reaction scheme involving eight reactions.


2008 ◽  
Vol 5 (2) ◽  
pp. 331-341
Author(s):  
Ningegowda Prasad ◽  
Kikkeri N. Mohana

The kinetics of oxidation of phenylpropanolamine (PPA) with sodium N-bromobenzenesulfonamide or bromamine-B (BAB) has been investigated in alkaline medium at 308 K. The oxidation reaction obeys the rate law, – d[BAB]/dt = k [BAB] [PPA]x [OH-], where x is less than unity. The variation of ionic strength of the medium, addition of the reduction product, benzenesulfonamide, and chloride ion had no pronounced effect on the reaction rate. Decrease of dielectric permittivity of the medium by increasing the CH3CN content increased the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated from the Arrhenius plot. The stiochiometry of the reaction was found to be 1:1, and the oxidation product of phenylpropanolamine was identified as benzaldehyde and ethylideneamine. The rate decreased in D2O medium and the normal isotope effect k' (H2O) / k' (D2O) is 2.18. Proton inventory studies have been made in H2O - D2O mixtures. Formation and decomposition constant of BAB-PPA complexes in the reaction scheme have been determined. The conjugate acid, C6H5SO2NHBr is assumed to be the reactive species. The proposed mechanism and the derived rate law are consistent with the observed experimental results.



Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.



Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.



Author(s):  
M. Park ◽  
S.J. Krause ◽  
S.R. Wilson

Cu alloying in Al interconnection lines on semiconductor chips improves their resistance to electromigration and hillock growth. Excess Cu in Al can result in the formation of Cu-rich Al2Cu (θ) precipitates. These precipitates can significantly increase corrosion susceptibility due to the galvanic action between the θ-phase and the adjacent Cu-depleted matrix. The size and distribution of the θ-phase are also closely related to the film susceptibility to electromigration voiding. Thus, an important issue is the precipitation phenomena which occur during thermal device processing steps. In bulk alloys, it was found that the θ precipitates can grow via the grain boundary “collector plate mechanism” at rates far greater than allowed by volume diffusion. In a thin film, however, one might expect that the growth rate of a θ precipitate might be altered by interfacial diffusion. In this work, we report on the growth (lengthening) kinetics of the θ-phase in Al-Cu thin films as examined by in-situ isothermal aging in transmission electron microscopy (TEM).



2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.



1980 ◽  
Vol 45 (8) ◽  
pp. 2219-2223 ◽  
Author(s):  
Marie Jakoubková ◽  
Martin Čapka

Kinetics of homogenous hydrogenation of 1-heptene catalysed by rhodium(I) complexes prepared in situ from μ,μ'-dichloro-bis(cyclooctenerhodium) and phosphines of the type RP(C6H5)2 (R = -CH3, -(CH2)nSi(CH3)3; n = 1-4) have been studied. The substitution of the ligands by the trimethylsilyl group was found to increase significantly the catalytic activity of the complexes. The results are discussed in relation to the electron density on the phosphorus atom determined by 31P NMR spectroscopy and to its proton acceptor ability determined by IR spectroscopy.



1980 ◽  
Vol 45 (9) ◽  
pp. 2391-2399 ◽  
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene with butyllithium as the initiator was investigated by the gas chromatographic method. After completion of the initial period of the reaction, its order with respect to the initial concentration of initiator is negative at the concentrations of the latter between 0.01 and 0.25 mol/l, and positive at higher concentrations. A reaction scheme has been suggested with respect to the "cross" association of butyllithium and of the "living" oligoisoprene.



1980 ◽  
Vol 45 (12) ◽  
pp. 3338-3346
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The effect of small additions of 1-octene, butyl ethyl ether and triethylamine on the polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene initiated with butyllithium was investigated by employing the GLC analysis. The addition of 1-octane was reflected only in a shorter induction period of the reaction; the effect on the propagation rate was insignificant. With the increasing amount of butyl ethyl ether, the polymerization rate increases linearly, while the reaction order with respect to the concentration of triethylamine is variable and increases from 0.33 to 0.66 with the increasing concentration of the initiator. For a constant concentration of triethylamine, the reaction order with respect to the initial concentration of the initiator was found to vary considerably, reaching even negative values. A reaction scheme was suggested, taking into account the competition between two different solvates of alkyllithium.



2000 ◽  
Vol 650 ◽  
Author(s):  
Lance L. Snead ◽  
Martin Balden

ABSTRACTDensification and crystallization kinetics of bulk SiC amorphized by neutron irradiation is studied. The temperature of crystallization onset of this highly pure, fully amorphous bulk SiC was found to be between 875-885°C and crystallization is nearly complete by 950°C. In-situ TEM imaging confirms the onset of crystallization, though thin-film effects apparently alter the kinetics of crystallization above this temperature. It requires >1125°C for complete crystallization of the TEM foil. Annealing at temperatures between the irradiation and crystallization onset temperature is seen to cause significant densification attributed to a relaxation, or reordering, of the as-amorphized structure.



2021 ◽  
Vol 22 (7) ◽  
pp. 3787
Author(s):  
Hussam Ibrahim ◽  
Philipp Reus ◽  
Anna Katharina Mundorf ◽  
Anna-Lena Grothoff ◽  
Valerie Rudenko ◽  
...  

Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.



Sign in / Sign up

Export Citation Format

Share Document