scholarly journals Phosphorylation of GAPVD1 Is Regulated by the PER Complex and Linked to GAPVD1 Degradation

2021 ◽  
Vol 22 (7) ◽  
pp. 3787
Author(s):  
Hussam Ibrahim ◽  
Philipp Reus ◽  
Anna Katharina Mundorf ◽  
Anna-Lena Grothoff ◽  
Valerie Rudenko ◽  
...  

Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.

CORROSION ◽  
2012 ◽  
Vol 68 (6) ◽  
pp. 507-517 ◽  
Author(s):  
K. D. Ralston ◽  
G. Williams ◽  
N. Birbilis

Prior works show that grain size can play a role in the corrosion of a metal; however, such works are nominally executed in a single electrolyte/environment at a single pH. In this work, the anodic and cathodic reaction kinetics of pure Mg specimens with grain sizes ranging from approximately 8 μm to 590 μm were compared as a function of pH in 0.1 mol dm−3 sodium chloride (NaCl) electrolytes using anodic polarization experiments and an in situ scanning vibrating electrode technique (SVET). Anodic polarization experiments showed that grain size is important in determining overall electrochemical response, but the environment dictates the form of the grain size vs. corrosion rate relationship (i.e., pH is the overall controlling factor). Consequently, the role of grain size upon corrosion cannot be fully assessed unless a variation in environment is simultaneously studied. For example, the anodic reaction, which dictates active corrosion, also dictates passivation, so the corrosion rate vs. grain size relationship has been shown to “flip” depending on pH. Further, SVET analysis of unpolarized Mg immersed in 0.1 mol dm−3 NaCl electrolyte at neutral pH showed that breakdown of passivity of cast Mg occurred after ~1 h immersion, giving filiform-like corrosion tracks. The front edges of these corrosion features were revealed as intense local anodes, while the remainder of the dark-corroded Mg surface, left behind as the anodes traversed the surface, became cathodically activated. In contrast, grain-refined Mg samples were significantly less susceptible to localized corrosion, and breakdown was not observed for immersion periods of up to 24 h.


1999 ◽  
Vol 589 ◽  
Author(s):  
Mridula D. Bharadwaj ◽  
Anu Gupta ◽  
J. Murray Gibson ◽  
Judith C. Yang

AbstractEffect of moisture on the oxidation of copper was studied using in situ UHV-TEM. The ultra high vacuum condition is required for minimum contamination effects. The initial observations show that the water vapor reduces the oxide as well as reduces the rate of oxidation if both oxygen gas and water vapor are simultaneously used. Based on these observations, we have speculated on the role of moisture in the solid state reactions involved in copper oxidation


2019 ◽  
Vol 48 (22) ◽  
pp. 7735-7742 ◽  
Author(s):  
Caiqin Zhou ◽  
Can Li ◽  
Yongtao Li ◽  
Qingan Zhang

Hydrogen sorption kinetics for Mg–Pr–Al is enhanced by the inhibiting role of Pr3Al11 and catalytic effect of PrH3/PrH2.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Muralidhar Tata ◽  
Anna Konovalova

ABSTRACT The β-barrel assembly machinery, the Bam complex, is central to the biogenesis of integral outer membrane proteins (OMPs) as well as OMP-dependent surface-exposed lipoproteins, such as regulator of capsule synthesis protein F (RcsF). Previous genetic analysis established the model that nonessential components BamE and BamB have overlapping, redundant functions to enhance the kinetics of the highly conserved BamA/BamD core. Here we report that BamE plays a specialized nonredundant role in the Bam complex required for surface exposure of RcsF. We show that the lack of bamE, but not bamB, completely abolishes assembly of RcsF/OMP complexes and establish that the inability to assemble RcsF/OMP complexes is a molecular reason underlying all synthetic lethal interactions of ΔbamE. Our genetic analysis and biochemical cross-linking suggest that RcsF accumulates on BamA when BamA cannot engage with BamD because of its limited availability or the incompatible conformation. The role of BamE is to promote proper coordination of RcsF-bound BamA with BamD to complete OMP assembly around RcsF. We show that in the absence of BamE, RcsF is stalled on BamA, thus blocking its function, and we identify the lipoprotein RcsF as a bona fide jamming substrate of the Bam complex. IMPORTANCE The β-barrel assembly machinery, the Bam complex, consists of five components, BamA to -E, among which BamA and BamD are highly conserved and essential. The nonessential components are believed to play redundant roles simply by improving the rate of β-barrel folding. Here we show that BamE contributes a specific and nonoverlapping function to the Bam complex. BamE coordinates BamA and BamD to form a complex between the lipoprotein RcsF and its partner outer membrane β-barrel protein, allowing RcsF to reach the cell surface. In the absence of BamE, RcsF accumulates on BamA, thus blocking the activity of the Bam complex. As the Bam complex is a major antibiotic target in Gram-negative bacteria, the discovery that a lipoprotein can act as a jamming substrate may open the door for development of novel Bam complex inhibitors.


Biology ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 130
Author(s):  
Carlo Breda ◽  
Ezio Rosato ◽  
Charalambos P. Kyriacou

In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR, which has significant implications for seasonal adaptations of circadian behaviour. We use the norpA mutant-generated enhancement of per splicing and the corresponding advance that it produces in the morning (M) and evening (E) locomotor component to dissect out the neurons that are contributing to this norpA phenotype using GAL4/UAS. We initially confirmed, by immunocytochemistry and in situ hybridisation in adult brains, that norpA expression is mostly concentrated in the eyes, but we were unable to unequivocally reveal norpA expression in the canonical clock cells using these methods. In larval brains, we did see some evidence for co-expression of NORPA with PDF in clock neurons. Nevertheless, downregulation of norpA in clock neurons did generate behavioural advances in adults, with the eyes playing a significant role in the norpA seasonal phenotype at high temperatures, whereas the more dorsally located CRYPTOCHROME-positive clock neurons are the likely candidates for generating the norpA behavioural effects in the cold. We further show that knockdown of the related plc21C encoded phospholipase in clock neurons does not alter per splicing nor generate any of the behavioural advances seen with norpA. Our results with downregulating norpA and plc21C implicate the rhodopsins Rh2/Rh3/Rh4 in the eyes as mediating per 3′ UTR splicing at higher temperatures and indicate that the CRY-positive LNds, also known as ‘evening’ cells are likely mediating the low-temperature seasonal effects on behaviour via altering per 3′UTR splicing.


2020 ◽  
Vol 14 (11) ◽  
pp. 2715-2731 ◽  
Author(s):  
Eleonora Chiri ◽  
Chris Greening ◽  
Rachael Lappan ◽  
David W. Waite ◽  
Thanavit Jirapanjawat ◽  
...  

Abstract Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH4) emissions, but the aerobic CH4 oxidising bacteria (methanotrophs) responsible for this consumption have not been resolved. Here, we describe the abundance, composition and CH4 oxidation kinetics of the methanotroph communities in the mounds of three distinct termite species sampled from Northern Australia. Results from three independent methods employed show that methanotrophs are rare members of microbial communities in termite mounds, with a comparable abundance but distinct composition to those of adjoining soil samples. Across all mounds, the most abundant and prevalent methane monooxygenase sequences were affiliated with upland soil cluster α (USCα), with sequences homologous to Methylocystis and tropical upland soil cluster (TUSC) also detected. The reconstruction of a metagenome-assembled genome of a mound USCα representative highlighted the metabolic capabilities of this group of methanotrophs. The apparent Michaelis–Menten kinetics of CH4 oxidation in mounds were estimated from in situ reaction rates. Methane affinities of the communities were in the low micromolar range, which is one to two orders of magnitude higher than those of upland soils, but significantly lower than those measured in soils with a large CH4 source such as landfill cover soils. The rate constant of CH4 oxidation, as well as the porosity of the mound material, were significantly positively correlated with the abundance of methanotroph communities of termite mounds. We conclude that termite-derived CH4 emissions have selected for distinct methanotroph communities that are kinetically adapted to elevated CH4 concentrations. However, factors other than substrate concentration appear to limit methanotroph abundance and hence these bacteria only partially mitigate termite-derived CH4 emissions. Our results also highlight the predominant role of USCα in an environment with elevated CH4 concentrations and suggest a higher functional diversity within this group than previously recognised.


2018 ◽  
Vol 20 (36) ◽  
pp. 23664-23673 ◽  
Author(s):  
Fabio Jonas Oldenburg ◽  
Marta Bon ◽  
Daniele Perego ◽  
Daniela Polino ◽  
Teodoro Laino ◽  
...  

Phosphoric acid improves the stability of vanadium redox flow battery electrolyte and enhances the kinetics of the negative electrode.


Sign in / Sign up

Export Citation Format

Share Document