scholarly journals Secrets revealed — Spatially selective wetting of plasma-patterned periodic mesoporous organosilica

2012 ◽  
Vol 90 (12) ◽  
pp. 1063-1068
Author(s):  
Wendong Wang ◽  
Ian B. Burgess ◽  
Benjamin D. Hatton ◽  
Jack Alvarenga ◽  
Joanna Aizenberg

We report a simple method to pattern wetting properties on thin films of periodic mesoporous organosilica (PMO). A hydrophobic methane PMO thin film was covered by masks and exposed to oxygen plasma to make the unmasked area hydrophilic. The wettability patterns could be revealed only when the films were immersed in water or exposed to moisture. We expect that our method would extend the utility of PMO to such areas as sensing and information security.

2014 ◽  
Vol 2 (30) ◽  
pp. 11857-11865 ◽  
Author(s):  
Masamichi Ikai ◽  
Yoshifumi Maegawa ◽  
Yasutomo Goto ◽  
Takao Tani ◽  
Shinji Inagaki

Mesoporous films containing 4,7-dithienyl-2,1,3-benzothiadiazole units in the frameworks were synthesized and demonstrated to function as a p-type layer for organic solar cells by filling an n-type PCBM in the mesopores.


2009 ◽  
Vol 79-82 ◽  
pp. 747-750 ◽  
Author(s):  
Dong Qing Liu ◽  
Wen Wei Zheng ◽  
Hai Feng Cheng ◽  
Hai Tao Liu

Thermochromic vanadium dioxide (VO2) exhibits a semi-conducting to metallic phase transition at about 68°C, involving strong variations in electrical and optical properties. A simple method was proposed to prepare VO2 thin films from easily gained V2O5 thin films. The detailed thermodynamic calculation was done and the results show that V2O5 will decompose to VO2 when the post annealing temperature reaches 550°C at the atmospheric pressure of less than 0.06Pa. The initial V2O5 films were prepared by sol-gel method on fused-quartz substrates. Different post annealing conditions were studied. The derived VO2 thin film samples were characterized using X-ray diffraction and X-ray photoelectron spectroscopy. The electrical resistance and infrared emissivity of VO2 thin films under different temperatures were measured. The results show that the VO2 thin film derived from the V2O5 thin film annealed at 550°C for 10 hours is pure dioxide of vanadium without other valences. It was observed that the resistance of VO2 thin film with thickness about 600nm can change by 4 orders of magnitude and the 7.5-14μm emissivity can change by 0.6 during the phase transition.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 745-748
Author(s):  
JAIME TORRES ◽  
JAIRO GIRALDO

A simple method is proposed to calculate optical constants from porous silicon (PS) thin films, out of the simulation of normal incidence reflection spectrums. In the optical system used in this model, PS one considers as a homogeneous uniform thin film when deposited upon a substrate with semi-infinite dimensions. The PS and Substrate refractive indexes are obtained using the Simple Harmonic Oscillator Model, proposed by Wemple and DiDomenico. In addition, the absorption coefficient and sample thickness are also be obtained. The model to calculate the optical constants of some samples prepared at different anodisation times is used.


2015 ◽  
Vol 815 ◽  
pp. 8-13
Author(s):  
Chun Min Zhang ◽  
Xiao Yong Liu ◽  
Lin Qing Zhang ◽  
Hong Liang Lu ◽  
Peng Fei Wang ◽  
...  

A novel Ru thin film formation method was proposed to deposit metallic Ru thin films on TiN substrate for future backend of line process in semiconductor technologies. RuO2 thin films were first grown on TiN substrate by oxygen plasma-enhanced atomic layer deposition technique. The deposited RuO2 thin films were then reduced into metallic Ru thin films by H2/N2-assisted annealing.


Sign in / Sign up

Export Citation Format

Share Document