Ru Thin Film Formation Using Oxygen Plasma Enhanced ALD and Rapid Thermal Processing

2015 ◽  
Vol 815 ◽  
pp. 8-13
Author(s):  
Chun Min Zhang ◽  
Xiao Yong Liu ◽  
Lin Qing Zhang ◽  
Hong Liang Lu ◽  
Peng Fei Wang ◽  
...  

A novel Ru thin film formation method was proposed to deposit metallic Ru thin films on TiN substrate for future backend of line process in semiconductor technologies. RuO2 thin films were first grown on TiN substrate by oxygen plasma-enhanced atomic layer deposition technique. The deposited RuO2 thin films were then reduced into metallic Ru thin films by H2/N2-assisted annealing.

2015 ◽  
Vol 349 ◽  
pp. 757-762 ◽  
Author(s):  
Young Bok Lee ◽  
Il-Kwon Oh ◽  
Edward Namkyu Cho ◽  
Pyung Moon ◽  
Hyungjun Kim ◽  
...  

2016 ◽  
Vol 45 (43) ◽  
pp. 17312-17318 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Dasom Park ◽  
Nabeen K. Shrestha ◽  
Jinho Chang ◽  
Cheol-Woo Yi ◽  
...  

An aqueous solution based synthetic method for binder-free Ag2Te thin films using ion exchange induced chemical transformation of Ag/AgxO thin films.


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34215-34223
Author(s):  
So-Yeong Na ◽  
Sung-Min Yoon

Oxide thin films transistors (TFTs) with Hf and Al co-incorporated ZnO active channels prepared by atomic-layer deposition are presented.


2020 ◽  
Vol 299 ◽  
pp. 1058-1063
Author(s):  
Denis Nazarov ◽  
Ilya Mitrofanov ◽  
Maxim Yu. Maximov

Tin oxide is the most promising material for thin film anodes of Li-ion batteries due to its cycling performance and high theoretical capacity. It is assumed that lithium-tin oxide can demonstrate even higher performance. Lithium-silicon-tin oxide nanofilms were prepared by atomic layer deposition (ALD), using the lithium bis (trimethylsilyl) amide (LiHMDS), tetraethyltin (TET) as a metal containing reagents and ozone or water or oxygen plasma as counter-reactants. Monocrystalline silicon (100) and stainless steel (316SS) were used as supports. The thicknesses of the nanofilms were measured by spectral ellipsometry (SE) and scanning electron microscopy (SEM). It was found that oxygen plasma is the most optimal ALD counter-reactant. The composition and structure were studied by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The nanofilms contain silicon as impurity, whose source is the ALD precursor (LiHMDS). The nanofilms deposited on stainless steel have shown the high Coulombic efficiency (99.1-99.8%) and cycling performance at a relatively high voltage (0.01 to 2.0V).


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 301 ◽  
Author(s):  
Yury Koshtyal ◽  
Denis Nazarov ◽  
Ilya Ezhov ◽  
Ilya Mitrofanov ◽  
Artem Kim ◽  
...  

Atomic layer deposition (ALD) provides a promising route for depositing uniform thin-film electrodes for Li-ion batteries. In this work, bis(methylcyclopentadienyl) nickel(II) (Ni(MeCp)2) and bis(cyclopentadienyl) nickel(II) (NiCp2) were used as precursors for NiO ALD. Oxygen plasma was used as a counter-reactant. The films were studied by spectroscopic ellipsometry, scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray reflectometry, and X-ray photoelectron spectroscopy. The results show that the optimal temperature for the deposition for NiCp2 was 200–300 °C, but the optimal Ni(MeCp)2 growth per ALD cycle was 0.011–0.012 nm for both precursors at 250–300 °C. The films deposited using NiCp2 and oxygen plasma at 300 °C using optimal ALD condition consisted mainly of stoichiometric polycrystalline NiO with high density (6.6 g/cm3) and low roughness (0.34 nm). However, the films contain carbon impurities. The NiO films (thickness 28–30 nm) deposited on stainless steel showed a specific capacity above 1300 mAh/g, which is significantly more than the theoretical capacity of bulk NiO (718 mAh/g) because it includes the capacity of the NiO film and the pseudo-capacity of the gel-like solid electrolyte interface film. The presence of pseudo-capacity and its increase during cycling is discussed based on a detailed analysis of cyclic voltammograms and charge–discharge curves (U(C)).


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21716-21737
Author(s):  
Rosemary R. Cranston ◽  
Benoît H. Lessard

Metal phthalocyanines (MPcs) are an abundant class of conjugated small molecules comprising and their integration into thin films is critial for the proper function of next generation applications.


2013 ◽  
Vol 20 (4) ◽  
pp. 644-647 ◽  
Author(s):  
Henrik Hovde Sønsteby ◽  
Dmitry Chernyshov ◽  
Michael Getz ◽  
Ola Nilsen ◽  
Helmer Fjellvåg

A multipurpose six-axis κ-diffractometer, together with the brilliance of the ESRF light source and a CCD area detector, has been explored for studying epitaxial relations and crystallinity in thin film systems. The geometrical flexibility of the six-axis goniometer allows measurement of a large volume in reciprocal space, providing an in-depth understanding of sample crystal relationships. By a set of examples of LaAlO3thin films deposited by the atomic layer deposition technique, the possibilities of the set-up are presented. A fast panoramic scan provides determination of the crystal orientation matrices, prior to more thorough inspection of single Bragg nodes. Such information, in addition to a broadening analysis of families of single reflections, is shown to correlate well with the crystallinity, crystallite size, strain and epitaxial relationships in the thin films. The proposed set-up offers fast and easy sample mounting and alignment, along with crucial information on key features of the thin film structures.


Sign in / Sign up

Export Citation Format

Share Document