THERMAL DECARBOXYLATION OF URONIC ACIDS

1952 ◽  
Vol 30 (4) ◽  
pp. 278-290 ◽  
Author(s):  
A. S. Perlin

A novel decarboxylation of uronic acids by merely heating the material without the use of a solvent or added catalyst is described. At approximately 255 °C. decarboxylation for uronic and polyuronic acids and salts within 15 min. reaction time is nearly quantitative. Vigorous dehydration occurs simultaneously, the residue corresponding basically to a 5-carbon skeleton that contains 1.5 atoms of oxygen. Other products of the reaction are minor and include carbon monoxide, and traces of acid and oils. Sugar acids, such as gluconic and ascorbic, are not as extensively decarboxylated. The reaction is employed for analysis of several nitrogen dioxide oxidized celluloses and starches and the results are in good agreement with those given by titration and the 12% hydrochloric acid method.

Author(s):  
Z.B. Baktybaeva ◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
N.R. Rahmatullin ◽  
E.G. Stepanov ◽  
...  

Introduction. High density of oil-producing and refining facilities in certain areas of Bashkortostan significantly affects the environment including ambient air quality in residential areas. Materials and methods. We analyzed concentrations of airborne toxicants (sulfur and nitrogen oxides, nitrogen and carbon oxides, hydrogen sulfide, ammonia, xylenes, toluene, phenol and total suspended particles) and population health status in the cities of Ufa, Sterlitamak, Salavat, Blagoveshchensk, and the Tuymazinsky District in 2007–2016. Pearson's correlation coefficients (r) were used to establish possible relationships between medico-demographic indicators and air pollution. Results. Republican fuel and energy enterprises contributed the most to local air pollution levels. Gross emissions from such enterprises as Bashneft-Ufaneftekhim and Bashneft-Navoil reached 43.69–49.77 thousand tons of pollutants per year. The levels of some air pollutants exceeded their maximum permissible concentrations. Elevated concentrations of ammonia, total suspended particles, nitrogen dioxide, and carbon monoxide were registered most frequently. High rates of congenital abnormalities, respiratory diseases in infants (aged 0-1), general mortality and morbidity of the population were observed in some oil-producing and refining areas. The correlation analysis proved the relationship between the concentration of carbon monoxide and general disease rates in adults based on hospital admissions (r = 0.898), general incidence rates in children (r = 0.957), and blood disease rates in infants (r = 0.821). Respiratory diseases in children correlated with nitrogen dioxide emission levels (r = 0.899). Conclusions. Further development of oil-producing, petrochemical and oil-refining industries should be carried out taking into account socio-economic living conditions of the population.


Author(s):  
Sultan Ayoub Meo ◽  
Faris Jamal Almutari ◽  
Abdulelah Adnan Abukhalaf ◽  
Omar Mohammed Alessa ◽  
ThamirAl-Khlaiwi ◽  
...  

2016 ◽  
pp. 120-125
Author(s):  
N. L. Mamaeva ◽  
S. A. Petrov

In the article there were calculated near-surface concentrations of pollutants in the atmospheric air of Purovsk area, Jamal-Nenets Autonomous region. The purpose was to compare these with the maximum permissible concentration. The geo-ecological maps of dispersion of substances emissions into the air were made up using the unified program for calculating the air pollution taking into account the technical characteristics of sources and emissions themselves, natural, especially climate, conditions, as well as protection urban development activities and the lay of land. The conclusions were made about the excess in the atmosphere of maximum permissible concentration of solids on carbon monoxide in Purovsk, and on nitrogen dioxide in Purovsk, as well as in Ust-Purovsk Tazovskaya Guba permafrost areas.


2011 ◽  
Vol 11 (4) ◽  
pp. 13099-13139 ◽  
Author(s):  
G. González Abad ◽  
N. D. C. Allen ◽  
P. F. Bernath ◽  
C. D. Boone ◽  
S. D. McLeod ◽  
...  

Abstract. Near global upper tropospheric concentrations of carbon monoxide (CO), ethane (C2H6) and ethyne (C2H2) from ACE (Atmospheric Chemistry Experiment) Fourier transform spectrometer on board the Canadian satellite SCISAT-1 are presented and compared with the output from the Chemical Transport Model (CTM) GEOS-Chem. The retrievals of ethane and ethyne from ACE have been improved for this paper by using new sets of microwindows compared with those for previous versions of ACE data. With the improved ethyne retrieval we have been able to produce a near global upper tropospheric distribution of C2H2 from space. Carbon monoxide, ethane and ethyne concentrations retrieved using ACE spectra show the expected seasonality linked to variations in the anthropogenic emissions and destruction rates as well as seasonal biomass burning activity. The GEOS-Chem model was run using the dicarbonyl chemistry suite, an extended chemical mechanism in which ethyne is treated explicitly. Seasonal cycles observed from satellite data are well reproduced by the model output, however the simulated CO concentrations are found to be systematically biased low over the Northern Hemisphere. An average negative global mean bias of 12% and 7% of the model relative to the satellite observations has been found for CO and C2H6 respectively and a positive global mean bias of 1% has been found for C2H2. ACE data are compared for validation purposes with MkIV spectrometer data and Global Tropospheric Experiment (GTE) TRACE-A campaign data showing good agreement with all of them.


2014 ◽  
Vol 7 (4) ◽  
pp. 5087-5139 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Ploeger ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements (at ≈ 700–200 hPa). Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in-situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈ 10–20 ppbv). Further, the model results are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations. The simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns for CH4 and CFC-11 were found to be consistent with those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly phase of the quasi-biennial oscillation.


1973 ◽  
Vol 95 (4) ◽  
pp. 535-538 ◽  
Author(s):  
J. C. Lin ◽  
R. Greif

The absorption of a vibrational-rotational band has been studied and the contribution from the first hot band has been included. A specific application has been made to carbon monoxide and good agreement with experimental results has been obtained.


1967 ◽  
Vol 1 (3) ◽  
pp. 307-318 ◽  
Author(s):  
Richard J. Ayen ◽  
Tomo-o Yonebayashi

1999 ◽  
Vol 54 (3-4) ◽  
pp. 218-224 ◽  
Author(s):  
N. Nissen ◽  
J. Doose ◽  
A. Guarnieri ◽  
H. Mäder ◽  
V. N. Markov ◽  
...  

The collisional broadening of the J '← J = 1 ← 0 rotational line of carbon monoxide by the buffer gases He, Ne, Ar, Kr, CO, N2, O2 , and air has been studied at room temperature. Two different experimental techniques in time- and frequency-domain, respectively, were used. The obtained data are in good agreement. Time-domain investigations on the temperature dependence of the foreign gas broadening parameters are also presented.


Sign in / Sign up

Export Citation Format

Share Document