THE LIFETIME OF THE STATE OF N2

1965 ◽  
Vol 43 (2) ◽  
pp. 369-374 ◽  
Author(s):  
L. F. Phillips

The decay of the blue emission from the active nitrogen – iodine flame has been measured at iodine pressures down to 1.4 × 10−4 torr. Extrapolation of the decay rate to zero iodine pressure yields a value of 0.89 ± 0.41 s−1 for the first-order rate constant in absence of iodine, corresponding to a mean lifetime of 1.1 s for the [Formula: see text] state of N2. The rate constants for the reactions[Formula: see text]and[Formula: see text]are (2.6 ± 0.3) × 10−11 exp (−68 ± 34/RT) and (8.3 ± 1.2) × 10−14 cm3 molecule−1 s−1 respectively.

1985 ◽  
Vol 63 (10) ◽  
pp. 2673-2678 ◽  
Author(s):  
Robert A. McClelland ◽  
Claude Moreau

Hydrolysis kinetics are reported for four spiro ortho esters: 3,4-dihydro-6-methoxy-1H-2-benzopyran-1-spiro-2′-1′,3′-dioxolane (13), its 1′,3′-dioxane analog (14), and the 6-unsubstituted versions of each (11 and 12). For comparison, also included are the diethoxy analogs: 1,1-diethoxy-3,4-dihydro-6-methoxy-1H-2-benzopyran (10) and the 6-unsubstituted compound (9). Product analysis implicates an initial opening of the dioxolane or dioxane ring in the spiro ortho esters, as expected on the basis of stereoelectronic considerations. The intermediate dialkoxycarbocations can be observed in HCl solutions. A detailed analysis has been carried out for the 6-methoxy systems to provide the rate constants k1, the second-order rate constant for H+-catalyzed formation of the cation from the ortho ester, k2, the first-order rate constant for water addition to the cation, and k−1, the first-order rate constant for ring closing of the cation to reform the ortho ester. The two spiro ortho esters are shown in this analysis to undergo reversible ring opening in their hydrolysis, in that values of k−1, are greater than k2. The differences, however, are not large, k−1/k2 being 1.2 (dioxolane, 13) and 3.8 (dioxane, 14). Comparison with the diethoxy ortho ester also reveals that the ring opening process (k1, rate constants) is inherently more difficult with the dioxolane, although not with the dioxane. An argument involving lone pair orientation is advanced to explain this.


1977 ◽  
Vol 167 (3) ◽  
pp. 859-862 ◽  
Author(s):  
K Brocklehurst ◽  
H B F Dixon

1. Reactions of enzymes with site-specific reagents may involve intermediate adsorptive complexes formed by parallel reactions in several protonic states. Accordingly, a profile of the apparent second-order rate constant for the modification reaction (Kobs., the observed rate constant under conditions where the reagent concentration is low enough for the reaction to be first-order in reagent) against pH can, in general, reflect free-reactant-state molecular pKa values only if a quasi-equilibrium condition exists around the reactive protonic state (EHR) of the adsorptive complex. 2. Usually the condition for quasi-equilibrium is expressed in terms of the rate constants around EHR: (formula: see text) i.e. k mod. less than k-2. This often cannot be assessed directly, particularly if it is not possible to determine kmod. 3. It is shown that kmod. must be much less than k-2, however, if kobs. (the pH-independent value of kobs.) less than k+2. 4. Since probable values of k+2 greater than 10(6)M-1.S-1 and since values of kobs. for many modification reactions less than 10(6)M-1.S-1, the equilibrium assumption should be valid, and kinetic study of such reactions should provide reactant-state pKa values. 5. This may not apply to catalyses, because for them the value of kcat./Km may exceed 5 X 10(5)M-1.S-1. 6. The conditions under which the formation of an intermediate complex by parallel pathways may come to quasi-equilibrium are discussed in the Appendix.


Author(s):  
Kamlesh Dashora ◽  
Shailendra Saraf ◽  
Swarnalata Saraf

Sustained released tablets of diclofenac sodium (DIC) and tizanidine hydrochloride (TIZ) were prepared by using different proportions of cellulose acetate (CA) as the retardant material. Nine formulations of tablets having different proportion of microparticles developed by varied proportions of polymer: drug ratio ‘’i.e.’’; 1:9 -1:3 for DIC and 1:1 – 3:1 for TIZ. Each tablet contained equivalent to 100 mg of DIC and 6mg of TIZ. The prepared microparticles were white, free flowing and spherical in shape (SEM study), with  the particle size varying from 78.8±1.94 to 103.33±1.28 µm and 175.92± 9.82 to 194.94±14.28µm for DIC  and TIZ, respectively.  The first order rate constant K1 of formulations were found to be in the range of  K1 = 0.117-0.272 and 0.083- 0.189 %hr-1for DIC and TIZ, respectively. The value of exponent coefficient (n) was found to be in the range of 0.6328-0.9412  and 0.8589-1.1954 for DIC and TIZ respectively indicates anomalous  to  non anomalous transport type of diffusions among different formulations


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


2021 ◽  
Author(s):  
◽  
Asokamali Siriwardena

<p>The reaction of bis-(diaminoethane)nickel(II) chloride, ([Ni(en)2]Cl2 in methanol with formaldehyde and nitroethane in the presence of triethylamine proceeds readily to produce (6, 13-dimethyl-6, 13-dinitro-1, 4, 8, 11-tetraazacyclotetradecane)nickel(II) chloride, [Ni(dini)] - Cl2. Reduction of the nitro groups of this compound by catalytic hydrogenation yields three isomers of the pendant arm macrocyclic complex (6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazachyclotetradecane)nickel(II) chloride, designated a-, b- and c-[Ni(diam)]Cl2. These were separated by fractional crystallization. The aisomer was observed to isomerizes slowly in solution to the b- form. A parallel dissociation reaction of the a- isomer was also observed. The demetallation of a- and b- isomers of the diam complex of nickel by reaction with cyanide or concentrated acid at 140 degrees C produces the macrocycle meso-(6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazacyclotetra-decane), diam. A variety of hexamine, pentamine and tetramine complexes of diam with nickel(II), copper(II), cobalt(II) and (III), chromium(III), palladium(II), rhodium(III), zinc(II) and cadmium(II) were prepared. Hexamine and tetramine forms of labile metal complexes could be rapidly and reversibly interconverted by altering the pH. The hexamine cobalt(III) cation, [Co(diam)]3+ was by far the most inert of the prepared cobalt(III) complexes, remaining unaffected in hot acidic solutions. In contrast, a single pendant arm of the hexamine [Cr(diam)]3+ cation could be dissociated in acid. (Two possibly triamine complexes of lead were also prepared). These compounds were characterized by elemental analysis, magnetic measurements, electronic, infrared, 1H and 13C nuclear magnetic resonance spectra. The pendant arm protonation constants (log K) of diam and selected complexes of nickel, copper and palladium were calculated from potentiometric titration measurements at 25 degrees C. The log K values for diam at 25 degrees C (I = 0.1 M NaclO4) were 11.15, 9.7, 6.2 and 5.3. Kinetics of the parallel isomerization and dissociation of a-[Ni(dimH2)]4+ in HCl/NaCl solutions were monitored spectrophotometrically at 50 degrees C. The rate of reaction in acidic solutions showed a non-linear dependency on acid concentration. The observed first order rate constant (kobs) for disappearance of a-[Ni(diamH2)]4+ (by isomerization and dissociation) in 2.0 M HCl, 0.1 M NaOH and 2.0 M NaCl were 3.05 x 10-4, 2.0(3) x 10-2 and 5.0 x 10-5 s-1 respectively. The rate of the dissociation component of the reaction of a-[Ni(diamH2)]4+ in 2.0 M HCl at 50 degrees C was 1.82 x 10-7 s-1. Acid bydrolysis kinetics of (Cu[diamH2])(ClO4)4 in hydrochloric acid and perchloric acid at 50 and 70 degrees C were studied spectrophotometrically. The reactions were slow and the observed first order rate constants were to a first approximation independent of the particular acid or its concentration. The observed first order rate constants were 1 x 10-9 and 8 x 10-9 s-1 at 50 and 70 degrees C respectively. Questions about the nature of the reaction being followed have been raised.</p>


1984 ◽  
Vol 62 (9) ◽  
pp. 1874-1876 ◽  
Author(s):  
Warren Kenneth Musker ◽  
Parminder S. Surdhar ◽  
Rizwan Ahmad ◽  
David A. Armstrong

The one electron oxidant •Br2− reacts with 5-methyl-1-thia-5-azacyclooctane (4) in aqueous solution at high pH with an overall rate constant of ~2 × 108 M s−1. The radical intermediate produced has a broad maximum at 500 nm with ε = 2400 M−1 cm−1 and at pH 10 decays with a first order rate constant of 2.3 ± 0.3 × 104 s−1, first half-life of 30 ± 5 μs. Its characteristics do not correspond to those of the [Formula: see text] species reported by Asmus and co-workers. The species appears to be the same as the cation radical reported earlier in the one electron oxidation of 4 in acetonitrile. This species is considered to have an [Formula: see text] type structure, which provides transannular stabilization.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Katharine E. Stott ◽  
Justin Beardsley ◽  
Sarah Whalley ◽  
Freddie Mukasa Kibengo ◽  
Nguyen Thi Hoang Mai ◽  
...  

ABSTRACT There is a limited understanding of the population pharmacokinetics (PK) and pharmacodynamics (PD) of amphotericin B deoxycholate (DAmB) for cryptococcal meningitis. A PK study was conducted in n = 42 patients receiving DAmB (1 mg/kg of body weight every 24 h [q24h]). A 2-compartment PK model was developed. Patient weight influenced clearance and volume in the final structural model. Monte Carlo simulations estimated drug exposure associated with various DAmB dosages. A search was conducted for trials reporting outcomes of treatment of cryptococcal meningitis patients with DAmB monotherapy, and a meta-analysis was performed. The PK parameter means (standard deviations) were as follows: clearance, 0.03 (0.01) × weight + 0.67 (0.01) liters/h; volume, 0.82 (0.80) × weight + 1.76 (1.29) liters; first-order rate constant from central compartment to peripheral compartment, 5.36 (6.67) h−1; first-order rate constant from peripheral compartment to central compartment, 9.92 (12.27) h−1. The meta-analysis suggested that the DAmB dosage explained most of the heterogeneity in cerebrospinal fluid (CSF) sterility outcomes but not in mortality outcomes. Simulations of values corresponding to the area under concentration-time curve from h 144 to h 168 (AUC144–168) resulted in median (interquartile range) values of 5.83 mg · h/liter (4.66 to 8.55), 10.16 mg · h/liter (8.07 to 14.55), and 14.51 mg · h/liter (11.48 to 20.42) with dosages of 0.4, 0.7, and 1.0 mg/kg q24h, respectively. DAmB PK is described adequately by a linear model that incorporates weight with clearance and volume. Interpatient PK variability is modest and unlikely to be responsible for variability in clinical outcomes. There is discordance between the impact that drug exposure has on CSF sterility and its impact on mortality outcomes, which may be due to cerebral pathology not reflected in CSF fungal burden, in addition to clinical variables.


1974 ◽  
Vol 29 (11-12) ◽  
pp. 680-682 ◽  
Author(s):  
Peter Amsler ◽  
David Buisson ◽  
Helmut Sigel

The dephosphorylation of ATP was characterized by determining the dependence of the first-order rate constant on pH in the absence and presence of Zn2+ and together with Zn2+ and 2,2′-bipyridyl. The Zn2+-accelerated reaction passes through a pH optimum at about 8. The decrease in the rate at higher pH is due to the formation of Zn(ATP) (OH)3-; this species is relatively insensitive towards dephosphorylation. It is concluded that Zn(ATP)2- is the reactive species and that the interaction between N (7) and Zn2+ in this complex is crucial for its reactivity. In the presence of 2,2′-bipyridyl (Bipy) the ternary complex, Zn (Bipy) (ATP)2-, is formed which is rather stable towards dephosphorylation. It is suggested that the described effects of acceleration and inhibition are helpful for understanding the recycled processes in nature.


1987 ◽  
Author(s):  
Zbigniew S Latallo ◽  
Craig M Jackson

Meizothrombin (MT) and meizothrombin des Fragment 1 (MT1) are intermediates in the conversion of prothrombin to α-thrombin (αTH). Due to their transient character, properties of these enzymes are difficult to establish. Isolation of MT1 was achieved by affinity chromatography on D-Phe-Pro-Arginal (FPRal)immobilized on Affi-Gel 10 as originally employed for thrombin purification (Patel et al. Biochim.Biophys. Acta 748,321 (1983)). Human prethrombin 1 was activated with the purified activator from Echis carinatus venom in the presence of Ca++;, benzamidine and FPRal gel at pH 7.8. After exhaustive washing the MT1 was eluted with 0.1 M hydroxylamine in 0.15 M Na acetate buffer, pH 5.5. Under these conditions the MT1 is stable and can bestored at -70°C. Upon changing the pH of the preparation to 8.0, complete conversion into aTH occurred atroom temperature within 48 hours. Homogeneity of both preparations wasdemonstrated by PAGE. The Km and ke, values for MT1 measured on Tos-Gly-Pro-Arg pNA(0.1 M NaCl, 0.01 M TRIS, 0.01 M HEPES, 0.1% PEG, pH 7.8, 25°C) were 15.7 /iM and 126 s-1. The kinetic con stants for the aTH resulting from autocatalytic degradation of MT1 were indistinguishable from those previously established forαTH obtained by Xa activation i.e. 4.77 /μM and 126 s-1. Clotting activity of MT1 was found to be only one fifth as high as that of the resulting μTH(746 u/mg vs. 3900 u/mg as tested using the NIH standard) .Inhibitionof MTl by antithrombin III was alsomuch less rapid than αTH andmost importantly, it was not affected by high affinity heparin( Mr20,300). Under conditions of the experiment (0.3 M NaCl, 0.0rl M TRIS, 0.01 M HEPES, 2.5 mM EDTA, 0.1% PEG, pH 7.8, 25°C; [ATIII] 100 nM, [E] 10 nM), the pseudo first order rate constants in the absence of heparin were 4.04 × 10-3V1 (MTl) and 1.13 × 10-3V1 (αTH), giving apparent second order rate constants of 4.04 × 103 and 1.13 × 10-4M-1s-1. In the presence of 4.5 nM of heparin the observed first order rate constant for MTl remained unchanged whereas it increased to 6.241 × 10-3s-1 (5.5 fold) for αTH. This apparent lack of an effect of heparin may be of significance in vivo.Supported by a Matching Grant from the American National Red Cross and by the Southeastern Michigan Blood Service.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


Sign in / Sign up

Export Citation Format

Share Document