Kinetics of Charge Scavenging in γ Irradiated Liquids with Large Free Ion Yields

1972 ◽  
Vol 50 (17) ◽  
pp. 2729-2738 ◽  
Author(s):  
Jean-Pol Dodelet ◽  
Gordon R. Freeman

The extent to which the calculated scavenging yields are affected by the form of the ion–electron special distribution decreases as the free ion yield increases. The increasing free ion yield may be due to larger electron ranges or to a larger dielectric constant. The free ion yields in neopentane and water are respectively 1.0 (due to large electron ranges) and 2.7 (due to large dielectric constant). The scavenging yields in neopentane calculated with three different forms of spacial distribution, using the forced diffusion (FD) approximation, are significantly affected by the form of the spacial distribution. The scavenging yields in water calculated with four different forms of spacial distribution, using the FD approximation, are all within the experimental error of the measured yields. Use of the prescribed diffusion (PD) approximation permits satisfactory yields to be calculated for neopentane, but leads to the unsatisfactory result that all of the secondary electrons in the liquid have the same range (delta function distribution YD). The scavenging yield curves obtained using the PD approximation for water did not have a steep enough slope even when the distribution YD was used; YD leads to a steeper slope than any other form of distribution. The PD approximation gives an overestimate of the breadth of the geminate neutralization time distribution. The calculated time required for half of the geminate neutralization reaction to occur is similar whether the FD or PD approximation is used, but the spread of the neutralization times is an order of magnitude greater from the latter than from the former. Calculations were also done for electron scavenging in methylcyclopentane and in methanol. Methylcyclopentane behaves like cyclohexane and methanol behaves much like water with regard to the kinetics of ion–electron reactions in the spurs.

1984 ◽  
Vol 52 (01) ◽  
pp. 015-018 ◽  
Author(s):  
A Girolami ◽  
A Sticchi ◽  
R Melizzi ◽  
L Saggin ◽  
G Ruzza

SummaryLaser nephelometry is a technique which allows the evaluation of the concentration of several serum proteins and clotting factors. By means of this technique it is also possible to study the kinetics of the reaction between antigen and antibody. We studied the kinetics of the reaction between prothrombin and an antiprothrombin antiserum using several prothrombins namely: Prothrombin Padua, prothrombin Molise, which are two congenital dysprothrombinemias, cirrhotic, coumarin or normal prothrombins. Different behaviors in the kinetics of the reactions were shown even when the concentration of prothrombins was about the same in all plasma tested. These differences were analyzed by means of a computer (Apple II 48 RAM) programmed to solve four unknown equations (Rodbard’s equation). From the data so obtained one can see that when voltages at the beginning and at the end of the reaction are in all cases about the same, a clear difference in the time required to reach half the maximum value of the voltage can still be demonstrated. This parameter, which is expressed in minutes, is longer in coumarin and prothrombin Molise than in controls. On the contrary it is shorter in prothrombin Padua and has about the same value of controls in the cirrhotic patient. Moreover the time at which the maximum rate is obtained is longer in coumarin and prothrombin Molise than in controls and shorter in liver cirrhosis and prothrombin Padua. In conclusion data obtained show that coumarin prothrombin behaves in a different way from cirrhotic prothrombin and also that there is a different behaviour between the two congenital dysprothrombinemias.


Author(s):  
Zhiyuan Chen ◽  
Christiaan Zeilstra ◽  
Jan van der Stel ◽  
Jilt Sietsma ◽  
Yongxiang Yang

AbstractIn order to understand the pre-reduction behaviour of fine hematite particles in the HIsarna process, change of morphology, phase and crystallography during the reduction were investigated in the high temperature drop tube furnace. Polycrystalline magnetite shell formed within 200 ms during the reduction. The grain size of the magnetite is in the order of magnitude of 10 µm. Lath magnetite was observed in the partly reduced samples. The grain boundary of magnetite was reduced to molten FeO firstly, and then the particle turned to be a droplet. The Johnson-Mehl-Avrami-Kolmogorov model is proposed to describe the kinetics of the reduction process. Both bulk and surface nucleation occurred during the reduction, which leads to the effect of size on the reduction rate in the nucleation and growth process. As a result, the reduction rate constant of hematite particles increases with the increasing particle size until 85 µm. It then decreases with a reciprocal relationship of the particle size above 85 µm.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 691
Author(s):  
Yugang Zhao ◽  
Zichao Zuo ◽  
Haibo Tang ◽  
Xin Zhang

Icing/snowing/frosting is ubiquitous in nature and industrial processes, and the accretion of ice mostly leads to catastrophic consequences. The existing understanding of icing is still limited, particularly for aircraft icing, where direct observation of the freezing dynamics is inaccessible. In this work, we investigate experimentally the impact and freezing of a water drop onto the supercooled substrate at extremely low vapor pressure, to mimic an aircraft passing through clouds at a relatively high altitude, engendering icing upon collisions with pendant drops. Special attention is focused on the ice coverage induced by an impinging drop, from the perimeter pointing outward along the radial direction. We observed two freezing regimes: (I) spread-recoil-freeze at the substrate temperature of Ts = −15.4 ± 0.2 °C and (II) spread (incomplete)-freeze at the substrate temperature of Ts = −22.1 ± 0.2 °C. The ice coverage is approximately one order of magnitude larger than the frozen drop itself, and counterintuitively, larger supercooling yields smaller ice coverage in the range of interest. We attribute the variation of ice coverage to the kinetics of vapor diffusion in the two regimes. This fundamental understanding benefits the design of new anti-icing technologies for aircraft.


2021 ◽  
Vol 11 (4) ◽  
pp. 1399
Author(s):  
Jure Oder ◽  
Cédric Flageul ◽  
Iztok Tiselj

In this paper, we present uncertainties of statistical quantities of direct numerical simulations (DNS) with small numerical errors. The uncertainties are analysed for channel flow and a flow separation case in a confined backward facing step (BFS) geometry. The infinite channel flow case has two homogeneous directions and this is usually exploited to speed-up the convergence of the results. As we show, such a procedure reduces statistical uncertainties of the results by up to an order of magnitude. This effect is strongest in the near wall regions. In the case of flow over a confined BFS, there are no such directions and thus very long integration times are required. The individual statistical quantities converge with the square root of time integration so, in order to improve the uncertainty by a factor of two, the simulation has to be prolonged by a factor of four. We provide an estimator that can be used to evaluate a priori the DNS relative statistical uncertainties from results obtained with a Reynolds Averaged Navier Stokes simulation. In the DNS, the estimator can be used to predict the averaging time and with it the simulation time required to achieve a certain relative statistical uncertainty of results. For accurate evaluation of averages and their uncertainties, it is not required to use every time step of the DNS. We observe that statistical uncertainty of the results is uninfluenced by reducing the number of samples to the point where the period between two consecutive samples measured in Courant–Friedrichss–Levy (CFL) condition units is below one. Nevertheless, crossing this limit, the estimates of uncertainties start to exhibit significant growth.


1977 ◽  
Vol 55 (11) ◽  
pp. 2050-2062 ◽  
Author(s):  
J.-P. Dodelet

Free ion yields have been measured in four hydrocarbon liquids: n-pentane, cyclopentane, neopentane, and neohexane. Each liquid has been studied from room temperature or below up to the critical temperature. Theoretical curves have been calculated using the relation between the free ion yields and the external field strength derived by Terlecki and Fiutak on the basis of an equation by Onsager. Two popular electron range distribution functions, Gaussian and exponential, have been shown not to be an adequate representation of the reality as far as the model used for the calculations is concerned. In order to fit experimental points, both range distribution functions would require a drastic increase in the total ionization yield, Gtot, with temperature increase. This would mean an unrealistic decrease of the ionization potential of the molecule from the melting point up to the critical temperature.It is possible to keep Gtot quite constant and within the range of values obtained by other techniques by extending the Gaussian range distribution function with a (range)−3 probability tail. The most probable range can be normalized for the liquid density. This parameter has been used to obtain information about the behaviour of epithermal electrons in the four alkane liquids from the melting point up to the critical temperature.(1) Normalized penetration ranges of epithermal electrons are dependent on the structure of the molecule in the entire liquid range but differences are smaller at critical than at low temperatures.(2) Normalized penetration ranges of epithermal electrons pass through a maximum in the liquid phase for neopentane, neohexane, and cyclopentane. No maximum is observed for n-pentane.(3) There is no drastic change in the behaviour of epithermal electrons in these alkanes at the critical temperature.


1996 ◽  
Vol 118 (4) ◽  
pp. 639-645 ◽  
Author(s):  
C. B. Park ◽  
N. P. Suh

An extrusion system that can create a polymer/gas solution rapidly for continuous processing of microcellular plastics is presented. Microcellular plastics are characterized by cell densities greater than 109 cells/cm3 and fully grown cells smaller than 10 μm. Previously these microcellular structures have been produced in a batch process by saturating a polymeric material with an inert gas under high pressure followed by inducing a rapid drop in the gas solubility. The diffusion phenomena encountered in this batch processing is typically slow, resulting in long cycle times. In order to produce microcellular plastics at industrial production rates, a means for the rapid solution formation is developed. The processing time required for completing the solution formation in the system was estimated from experimental data and the dispersive mixing theory based on an order-of-magnitude analysis. A means for promoting high bubble nucleation rates in the gas-saturated polymer via rapid heating is also discussed. The feasibility of the continuous production of microcellular plastics by the rapid polymer/gas solution formation and rapid heating was demonstrated through experiments. The paper includes not only a brief treatment of the basic science of the polymer/gas systems, but also the development of an industrially viable technology that fully utilizes the unique properties of microcellular plastics.


2017 ◽  
Vol 10 ◽  
pp. 1-15
Author(s):  
P. Morais Pessôa ◽  
A.G. Barbosa de Lima ◽  
R. Swarnakar ◽  
J.P. Gomes ◽  
W.M.P. Barbosa de Lima

Cooling has been used for the preservation of fresh produce such as fruit and vegetables due to its low cost and high effectiveness in maintaining the product quality. Recently, several researchers have conducted theoretical and experimental studies for obtaining the kinetics of cooling and cooling time for fruits with different geometries. Present work, therefore, aims to simulate the cooling of fruits with particular reference to banana, orange, strawberry and Tahiti lemon. The transient heat conduction equation and its analytical solution using Galerkin based integral method are presented. It has been found that the strawberry has lower dimensionless cooling time compared with time required to cool other fruits, which is due to its higher surface area/volume ratio value. In orange and lemon the temperature distribution was found to be homogeneous in the angular direction, while in banana and strawberry it was two-dimensional due to shape of the fruits.


2013 ◽  
Vol 20 (1) ◽  
pp. 19-23 ◽  
Author(s):  
V. M. Vasyliūnas

Abstract. The depression of the horizontal magnetic field at Earth's equator for the largest imaginable magnetic storm has been estimated (Vasyliūnas, 2011a) as −Dst ~ 2500 nT, from the assumption that the total pressure in the magnetosphere (plasma plus magnetic field perturbation) is limited, in order of magnitude, by the minimum pressure of Earth's dipole field at the location of each flux tube. The obvious related question is how long it would take the solar wind to supply the energy content of this largest storm. The maximum rate of energy input from the solar wind to the magnetosphere can be evaluated on the basis either of magnetotail stress balance or of polar cap potential saturation, giving an estimate of the time required to build up the largest storm, which (for solar-wind and magnetospheric parameter values typical of observed superstorms) is roughly between ~2 and ~6 h.


Sign in / Sign up

Export Citation Format

Share Document