Hydrogénation of phosphido bridged ruthenium clusters. A view of P—C bond activation and cleavage in the coordinatively unsaturated molecule Ru3(CO)9(μ2-PPh2)(μ2-H): conversion of μ2-PPh2 to μ3-PPh

1982 ◽  
Vol 60 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Shane A. Maclaughlin ◽  
Arthur J. Carty ◽  
Nicholas J. Taylor

Treatment of Ru3(CO)8(μ3-η2-C≡CR)(μ2-PPh2)(R = But, Pri) with dihydrogen liberates olefin (CH2=CHR) and generates the coordinatively unsaturated cluster Ru3(CO)9(μ2-PPh2)(μ2-H) which has been shown by X-ray diffraction to have an unprecedented μ2-phosphido bridge in which a P—phenyl group interacts with an electron deficient ruthenium atom. This molecule provides an insight into P—C bond activation leading to cleavage. Further reaction of Ru3(CO)9(μ2-PPh2)(μ2-H) with H2 leads to the phosphinidene cluster Ru3(CO)9(μ3-PPh)(μ2-H)2 via elimination of benzene. Conversion of Ru3(CO)9(μ2-PPh2)(μ2-H) to another phosphinidene cluster Ru4(CO)13(μ3-PPh) occurs on pyrolysis. Hydrogénation of multi-site bound acetylides with H2 is a potentially useful synthetic route to unsaturated clusters. Hydrogenative conversion of μ2-PPh2 to μ3-PPh groups has significance for the synthesis of phosphinidene capped molecules as well as the chemistry of phosphido bridged clusters.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


2010 ◽  
Vol 65 (11) ◽  
pp. 1293-s1308 ◽  
Author(s):  
Laurent Plasseraud ◽  
Hélène Cattey ◽  
Philippe Richard

A new and facile synthetic route to the known neutral cluster ((PhCH2)2SnO)6[((PhCH2)2SnOH)2- (CO3)]2 (2) as well as its reactivity toward trifluoromethanesulfonic acid (HO3SCF3, TfOH) are reported. The solid-state structure of the new solvate 2·6C7H8 has been determined by single-crystal X-ray diffraction. The core of 2 can be described as a pair of coplanar pentanuclear [(PhCH2)2SnO]5 ladders bridged at their ends by two carbonate groups. Successive additions of TfOH to a suspension of 2 in CD3CN were monitored by 119Sn{1H} NMR spectroscopy showing the transformation of the fingerprint of 2 (δ = −244, −246, −306 ppm), via new upfield signals, to a final broad resonance located at δ = −474 ppm. Thereafter, two unprecedented ionic monobenzyltin(IV) oxo clusters, 3 and 4, resulting from a debenzylation reaction and exhibiting unusual hexa- and undecanuclear frameworks, respectively, have been isolated as single crystals.


2021 ◽  
Vol 32 (29) ◽  
pp. 295701
Author(s):  
Yalan Huang ◽  
He Zhu ◽  
Hekang Zhu ◽  
Jian Zhang ◽  
Yang Ren ◽  
...  

2019 ◽  
Vol 2019 (6) ◽  
pp. 875-884 ◽  
Author(s):  
Maxim G. Chegerev ◽  
Alexandr V. Piskunov ◽  
Kseniya V. Tsys ◽  
Andrey G. Starikov ◽  
Klaus Jurkschat ◽  
...  

2004 ◽  
Vol 844 ◽  
Author(s):  
David J. Scurr ◽  
Stephen J. Eichhorn

ABSTRACTThis study uses various characterisation techniques on the razor shell (Ensis siliqua), to relate the shell's microstructure to its mechanical properties. Scanning electron microscopy (SEM) has shown that the outer and inner regions of the shell are composed of simple and complex crossed lamellar microstructures respectively. These layers are interspersed by prismatic layers of a completely different crystallographic orientation. Nanoindentation and microhardness measurements have shown that the structure is anisotropic, and Raman band shifts have been observed within these indented/deformed areas of shell, showing that the microstructure deforms rather than generating surface damage. The use of energy variable synchrotron X-ray diffraction has shown that the calcium carbonate crystals of the shell are preferentially orientated as a function of depth and that opposing residual stresses exist at the outer and inner regions of the shell. This study has analysed several microstructural features of the shell and provided an insight into how they prevent failure of the material.


2005 ◽  
Vol 20 (12) ◽  
pp. 3270-3273 ◽  
Author(s):  
F. Berberich ◽  
H. Graafsma ◽  
B. Rousseau ◽  
A. Canizares ◽  
R. Ramy Ratiarison ◽  
...  

A unique combination of in situ synchrotron x-ray diffraction and in situ micro-Raman spectroscopy was used to study the growth process of YBa2Cu3O6+x films obtained by metal organic decomposition using trifluoroacetate precursor on LaAlO3 substrates. The techniques give complementary information: x-ray diffraction gives insight into the structural growth, whereas micro-Raman spectroscopy gives information of the chemical composition with additional information on the texture. To perform both experiments in situ, a special high-temperature process chamber was designed.


2011 ◽  
Vol 50 (43) ◽  
pp. 10255-10255 ◽  
Author(s):  
Simon D. M. Jacques ◽  
Marco Di Michiel ◽  
Andrew M. Beale ◽  
Taha Sochi ◽  
Matthew G. O'Brien ◽  
...  

2003 ◽  
Vol os-12 (2) ◽  
pp. 1558925003os-12 ◽  
Author(s):  
Randall R. Bresee ◽  
Wen-Chien Ko

Experimental measurements are presented to provide phenomenological insight into the commercial melt blowing process. In particular, we discuss the following experimental measurements obtained at various die-collector locations: fiber diameter, fiber velocity, air velocity, fiber acceleration, fiber entanglement, fiber temperature, birefringence, wide-angle x-ray diffraction and small-angle x-ray scattering. Our discussion focuses on how these measurements provide insight into fiber formation during melt blowing.


Sign in / Sign up

Export Citation Format

Share Document