Wide-range antifungal antagonism ofPaenibacillus ehimensisIB-X-b and its dependence on chitinase and β-1,3-glucanase production

2008 ◽  
Vol 54 (7) ◽  
pp. 577-587 ◽  
Author(s):  
G. Aktuganov ◽  
A. Melentjev ◽  
N. Galimzianova ◽  
E. Khalikova ◽  
T. Korpela ◽  
...  

Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%–75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas β-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and β-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which β-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.


2020 ◽  
Vol 21 (21) ◽  
pp. 7912 ◽  
Author(s):  
Tatyana Odintsova ◽  
Larisa Shcherbakova ◽  
Marina Slezina ◽  
Tatyana Pasechnik ◽  
Bakhyt Kartabaeva ◽  
...  

Hevein-like antimicrobial peptides (AMPs) comprise a family of plant AMPs with antifungal activity, which harbor a chitin-binding site involved in interactions with chitin of fungal cell walls. However, the mode of action of hevein-like AMPs remains poorly understood. This work reports the structure–function relationship in WAMPs—hevein-like AMPs found in wheat (Triticum kiharae Dorof. et Migush.) and later in other Poaceae species. The effect of WAMP homologues differing at position 34 and the antifungal activity of peptide fragments derived from the central, N- and C-terminal regions of one of the WAMPs, namely WAMP-2, on spore germination of different plant pathogenic fungi were studied. Additionally, the ability of WAMP-2-derived peptides to potentiate the fungicidal effect of tebuconazole, one of the triazole fungicides, towards five cereal-damaging fungi was explored in vitro by co-application of WAMP-2 fragments with Folicur® EC 250 (25% tebuconazole). The antifungal activity of WAMP homologues and WAMP-2-derived peptides varied depending on the fungus, suggesting multiple modes of action for WAMPs against diverse pathogens. Folicur® combined with the WAMP-2 fragments inhibited the spore germination at a much greater level than the fungicide alone, and the type of interactions was either synergistic or additive, depending on the target fungus and concentration combinations of the compounds. The combinations, which resulted in synergism and drastically enhanced the sensitivity to tebuconazole, were revealed for all five fungi by a checkerboard assay. The ability to synergistically interact with a fungicide and exacerbate the sensitivity of plant pathogenic fungi to a commercial antifungal agent is a novel and previously uninvestigated property of hevein-like AMPs.



2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kátia Santana Cruz ◽  
Emerson Silva Lima ◽  
Marcia de Jesus Amazonas da Silva ◽  
Erica Simplício de Souza ◽  
Andreia Montoia ◽  
...  

Background. Cryptococcosis is a fungal disease of bad prognosis due to its pathogenicity and the toxicity of the drugs used for its treatment. The aim of this study was to investigate the medicinal potential of carbazole and β-carboline alkaloids and derivatives against Cryptococcus neoformans and C. gattii. Methods. MICs were established in accordance with the recommendations of the Clinical and Laboratory Standards Institute for alkaloids and derivatives against C. neoformans and C. gattii genotypes VNI and VGI, respectively. A single active compound was further evaluated against C. neoformans genotypes VNII, VNIII, and VNIV, C. gattii genotypes VGI, VGIII, and VGIV, Candida albicans ATCC 36232, for cytotoxicity against the MRC-5 lineage of human fibroblasts and for effects on fungal cells (cell wall, ergosterol, and leakage of nucleic acids). Results. Screening of 11 compounds revealed 8-nitroharmane as a significant inhibitor (MIC 40 μg/mL) of several C. neoformans and C. gattii genotypes. It was not toxic to fibroblasts (IC50 > 50 µg/mL) nor did it alter fungal cell walls or the concentration of ergosterol in C. albicans or C. neoformans. It increased leakage of substances that absorb at 260 nm. Conclusions. The synthetic β-carboline 8-nitroharmane significantly inhibits pathogenic Cryptococcus species and is interesting as a lead compound towards new therapy for Cryptococcus infections.



Author(s):  
Rodrigo Rollin-Pinheiro ◽  
Yuri de Castro Almeida ◽  
Victor Pereira Rochetti ◽  
Mariana Ingrid Dutra da Silva Xisto ◽  
Luana Pereira Borba-Santos ◽  
...  

Scedosporium and Lomentospora species are filamentous fungi responsible for a wide range of infections in humans and are frequently associated with cystic fibrosis and immunocompromising conditions. Because they are usually resistant to many antifungal drugs available in clinical settings, studies of alternative targets in fungal cells and therapeutic approaches are necessary. In the present work, we evaluated the in vitro antifungal activity of miltefosine against Scedosporium and Lomentospora species and how this phospholipid analogue affects the fungal cell. Miltefosine inhibited different Scedosporium and Lomentospora species at 2–4 µg/ml and reduced biofilm formation. The loss of membrane integrity in Scedosporium aurantiacum caused by miltefosine was demonstrated by leakage of intracellular components and lipid raft disorganisation. The exogenous addition of glucosylceramide decreased the inhibitory activity of miltefosine. Reactive oxygen species production and mitochondrial activity were also affected by miltefosine, as well as the susceptibility to fluconazole, caspofungin and myoricin. The data obtained in the present study contribute to clarify the dynamics of the interaction between miltefosine and Scedosporium and Lomentospora cells, highlighting its potential use as new antifungal drug in the future.



2021 ◽  
Author(s):  
Pamela R. Avila ◽  
Graciela Juez Castillo ◽  
Carel E. Carvajal

Abstract Fungal diseases are a current problem in agriculture causing significant losses in several crops whereby its prevention and treatment is of utmost importance. The Chitosan nanoparticles (ChNPs) were evaluated for their antimicrobial activity against the phytopathogen Fusarium solani. The chitosan concentration in nanoparticles that showed antifungal activity was 2.0 µg/mL. ChNPs showed to be a potential antifungal candidate with applications in phytosanitary control. Transmission electron microscopy (TEM) results showed damage to the fungal cell wall and membrane caused by the nanoparticles interaction with these structures affecting fungal growth and development in in vitro as in in vivo assay where microscopy demonstrated the internalization of nanoparticles aggregates within plant root cells cytoplasm up to 45 days. Therefore ChNPs nanoparticles could be an alternative method for diseases caused by Fusarium solani instead of chemical fungicides commonly used for treating tomato root rot.



2002 ◽  
Vol 66 (5) ◽  
pp. 970-977 ◽  
Author(s):  
Toki TAIRA ◽  
Takayuki OHNUMA ◽  
Takeshi YAMAGAMI ◽  
Yoichi ASO ◽  
Masatsune ISHIGURO ◽  
...  


Author(s):  
Jatziri Mota-Gutierrez ◽  
Irene Franciosa ◽  
Marianna Ruggirello ◽  
Paola Dolci

AbstractBakery products are a common medium for fungal growth due to their high-water activity and nutrients availability. The application of lactic acid bacteria (LAB) isolated from wheat bran or other cereals has shown great potential in controlling the growth of spoilage fungi, guarantee quality and prolong the shelf life of bakery products. This study outlines the antifungal, technological, functional and safety properties of autochthonous LAB microbiota isolated from type 0 soft wheat sourdough fermentation. Antifungal activity of 77 LAB belonging to Lactiplantibacillus plantarum and Lacticaseibacillus casei species isolated from spontaneous sourdough fermentation was tested in vitro against 16 spoilage fungi. Our findings demonstrated that the antifungal activity, enzymatic and safety properties of LAB isolates vary strain-dependently. Four LAB isolates (Lp. plantarum A16, A25, B11, and B15) showed the best traits, in particular strong antifungal activity and good capabilities to produce exopolysaccharides from different carbon sources in vitro. Care should be taken when using Lp. plantarum A310 and B18 and Lc. casei A23, as starter cultures, since these isolates exhibited a multiple antibiotic-resistance. Here we showed the promising potential of different LAB isolates as bio-preservative agents and to provide new insights regarding their prospective use as starter cultures to guarantee safety and palatability. Graphic abstract



2022 ◽  
Author(s):  
Qing Xiong ◽  
Angel Tsz-Yau Wan ◽  
Xiao-Yu Liu ◽  
Cathy Sin-Hang Fung ◽  
Xiaojun Xiao ◽  
...  

Abstract Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing roughly 1–2% of the allergic diseases globally; however, their evolutionary origin, diverse lifestyles including reversible parasitism and quick adaptation to rather new human household environments have not been illustrated at genomic level, which hamper the allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this comparative genomics study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the divergent evolution of astigmatic mites. In the monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases (UGTs), which enriched their capacities of adapting to rapidly changing household environments. The gene diversification after tandem duplications provided plenty of genetic resources for their adaptations of sensing environmental signals, digestion, and detoxification. Whilst many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UGTs and several important fungal cell wall lytic enzymes, which enable the detoxification and associated digestive functions and provide perfect drug targets for pest control. Our comparative study sheds light on the rapid divergent evolution of astigmatic mites from the divergence of Acariformes to their diversification and provides novel insights into the genetic adaptations and even control of human household pests.



2018 ◽  
Vol 69 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Adam Perczak ◽  
Piotr Goliński ◽  
Marcin Bryła ◽  
Agnieszka Waśkiewicz

Abstract Mycotoxins are produced by some fungal species of the genera Aspergillus, Penicillium, and Fusarium and are common contaminants of a wide range of food commodities. Numerous strategies are used to minimise fungal growth and mycotoxin contamination throughout the food chain. This review addresses the use of lactic acid bacteria, which can inhibit fungal growth and participate in mycotoxin degradation and/or removal from contaminated food. Being beneficial for human and animal health, lactic acid bacteria have established themselves as an excellent solution to the problem of mycotoxin contamination, yet in practice their application in removing mycotoxins remains a challenge to be addressed by future research.



2021 ◽  
Vol 12 ◽  
Author(s):  
Xinrong Zhang ◽  
Zhenhua Zhang ◽  
Xiao-Lin Chen

Redox modification, a post-translational modification, has been demonstrated to be significant for many physiological pathways and biological processes in both eukaryotes and prokaryotes. However, little is known about the global profile of protein redox modification in fungi. To explore the roles of redox modification in the plant pathogenic fungi, a global thiol proteome survey was performed in the model fungal pathogen Magnaporthe oryzae. A total of 3713 redox modification sites from 1899 proteins were identified through a mix sample containing mycelia with or without oxidative stress, conidia, appressoria, and invasive hyphae of M. oryzae. The identified thiol-modified proteins were performed with protein domain, subcellular localization, functional classification, metabolic pathways, and protein–protein interaction network analyses, indicating that redox modification is associated with a wide range of biological and cellular functions. These results suggested that redox modification plays important roles in fungal growth, conidium formation, appressorium formation, as well as invasive growth. Interestingly, a large number of pathogenesis-related proteins were redox modification targets, suggesting the significant roles of redox modification in pathogenicity of M. oryzae. This work provides a global insight into the redox proteome of the pathogenic fungi, which built a groundwork and valuable resource for future studies of redox modification in fungi.



1975 ◽  
Vol 21 (4) ◽  
pp. 442-452 ◽  
Author(s):  
D. H. Ellis ◽  
D. A. Griffiths

Hyaline hyphae of Phomopsis become pigmented when exposed to short periods of light. Pigment was deposited in the form of melanin granules both within the cell wall and within mucilaginous excrescences that were developed irregularly over the hyphal surface. Analysis of the pigment showed it to have properties similar to that of "Dopa" melanin and to pigments previously isolated from fungal cell walls. Lysis of both hyaline and pigmented hyphal walls by means of lytic enzymes was minimal. It is suggested that the major role of melanin in this fungus is the protection of cellular organelles from harmful ionizing radiations.



Sign in / Sign up

Export Citation Format

Share Document