Distribution of class 1 integrons among enteropathogenic Escherichia coli

2012 ◽  
Vol 58 (5) ◽  
pp. 637-643 ◽  
Author(s):  
S. Najibi ◽  
B. Bakhshi ◽  
S. Fallahzad ◽  
M.R. Pourshafie ◽  
M. Katouli ◽  
...  

The aim of this study was to investigate the incidence of and resistance gene content of class 1 integrons among enteropathogenic Escherichia coli (EPEC) and non-EPEC and to investigate intraspecies genetic diversity of EPEC strains isolated from children with diarrhea in Iran. Twenty-eight EPEC and 16 non-EPEC strains isolated from children with diarrhea were tested for the presence of a class 1 integron associated integrase gene (int1). Sequence analysis was performed to identify the resistance gene content of integrons. Genetic diversity and cluster analysis of EPEC isolates were also investigated using enterobacterial repetitive intergenic concensus – polymerase chain reaction (ERIC–PCR) fingerprinting. Twenty-three (82%) EPEC isolates and 11 (68.7%) non-EPEC isolates harbored the int1 gene specific to the conserved integrase region of class 1 integrons. Sequence analysis revealed the dominance of dfrA and aadA gene cassettes among the isolates of both groups. ERIC–PCR fingerprinting of EPEC isolates revealed a high diversity among these isolates. The widespread distribution of 2 resistance gene families (dfrA and aadA) among both groups of EPEC and non-EPEC isolates indicates the significance of integrons in antibiotic resistance transfer among these bacteria. Furthermore, clonal diversity of EPEC isolates harbouring a class 1 integron also suggests the circulation of these mobile elements among a diverse population of EPEC in this country.

2018 ◽  
Vol 16 (5) ◽  
pp. 319-327
Author(s):  
Atchariya YOSBOONRUANG ◽  
Anong KIDDEE ◽  
Chatsuda BOONDUANG ◽  
Phannarai PIBALPAKDEE

Escherichia coli is a serious cause of a variety of hospital-acquired infections and commonly contributes to the environment by house flies. Integrons, particularly class 1 integrons, are the genetic elements that play an important role in the horizontal transfer of antimicrobial resistance mechanism. This mechanism is commonly found in Enterobacteriaceae, especially E. coli. In this study, we aim to investigate the occurrence and antimicrobial resistance patterns of E. coli isolated from the house flies in Phayao hospital and to determine the gene expression of class 1 integrons in those isolates of E. coli. Totally, 70 isolates of E. coli were isolated from 60 house flies collected from the hospital. Fifty-seven of the isolates (81.43 %) were multidrug resistance (MDR) and highly resistant to b-lactams, tetracyclines, and sulfonamides. Of 57 isolates of MDR-E. coli, 20 isolates (35 %) were found to carry class 1 integron genes. Fifteen patterns of antimicrobial resistance occurred in the isolates of integron-positive E. coli. Most integron-positive E. coli isolates were resistant to 7 antimicrobials. Two isolates of these bacteria (10 %) were able to resist 13 out of 14 tested antimicrobials. Using PCR and sequencing analysis, an investigation showed that dfrA17-aadA5, dfrA12-aadA2 gene cassette was the most prevalent cassette (n = 10; 50 %) among the integron-positive E. coli isolates. Our results indicated that the presences of multidrug resistance and class 1 integrons were common in E. coli isolated from the houseflies in hospital. Therefore, screening for integron-positive E. coli from the hospital environment might be necessary for prevention of nosocomial infections.


2015 ◽  
Vol 78 (8) ◽  
pp. 1442-1450 ◽  
Author(s):  
KANJANA CHANGKAEW ◽  
APIRADEE INTARAPUK ◽  
FUANGFA UTRARACHKIJ ◽  
CHIE NAKAJIMA ◽  
ORASA SUTHIENKUL ◽  
...  

Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)–producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.


2001 ◽  
Vol 67 (12) ◽  
pp. 5675-5682 ◽  
Author(s):  
Anja S. Schmidt ◽  
Morten S. Bruun ◽  
Inger Dalsgaard ◽  
Jens L. Larsen

ABSTRACT A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Microbiol. 66:4908–4915, 2000), the predominant resistance phenotype (37%) being a combined oxytetracycline (OTC) and sulphadiazine/trimethoprim resistance. Combined sulphonamide/trimethoprim resistance (135 isolates) appeared closely related to the presence of a class 1 integron (141 strains). Among the isolates containing integrons, four different combinations of integrated resistance gene cassettes occurred, in all cases including a dihydrofolate reductase gene and a downstream aminoglycoside resistance insert (87 isolates) and occasionally an additional chloramphenicol resistance gene cassette (31 isolates). In addition, 23 isolates had “empty” integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class 1 integron. Out of 17 successful R-plasmid transfers to Escherichia coli recipients, the respective integrons were cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetApositive (10 of 17) and contained class 1 integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R-plasmids andtetA among the OTC-resistant aeromonads, tetEand the unclassified OTC resistance genes as well as class 1 integrons were equally distributed among isolates with and without plasmids. These findings indicate the implication of other mechanisms of gene transfer besides plasmid transfer in the dissemination of antibiotic resistance among environmental motile aeromonads.


2001 ◽  
Vol 183 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Thierry Naas ◽  
Yuzuru Mikami ◽  
Tamae Imai ◽  
Laurent Poirel ◽  
Patrice Nordmann

ABSTRACT Further characterization of the genetic environment of the gene encoding the Escherichia coli extended-spectrum β-lactamase, bla VEB-1, revealed the presence of a plasmid-located class 1 integron, In53, which carried eight functional resistance gene cassettes in addition tobla VEB-1. While the aadB and the arr-2 gene cassettes were identical to those previously described, the remaining cassettes were novel: (i) a novel nonenzymatic chloramphenicol resistance gene of the cmlAfamily, (ii) a qac allele encoding a member of the small multidrug resistance family of proteins, (iii) a cassette,aacA1b/orfG, which encodes a novel 6′-N-acetyltransferase, and (iv) a fused gene cassette,oxa10/aadA1, which is made of two cassettes previously described as single cassettes. In addition, oxa10 andaadA1 genes were expressed from their own promoter sequence present upstream of the oxa10 cassette.arr-2 coded for a protein that shared 54% amino acid identity with the rifampin ADP-ribosylating transferase encoded by thearr-1 gene from Mycobacterium smegmatisDSM43756. While in M. smegmatis, the main inactivated compound was 23-ribosyl-rifampin, the inactivated antibiotic recovered from E. coli culture was 23-O-ADP-ribosyl-rifampin. The integrase gene of In53 was interrupted by an IS26 insertion sequence, which was also present in the 3′ conserved segment. Thus, In53 is a truncated integron located on a composite transposon, named Tn2000, bounded by two IS26 elements in opposite orientations. Target site duplication at both ends of the transposon indicated that the integron likely was inserted into the plasmid through a transpositional process. This is the first description of an integron located on a composite transposon.


2005 ◽  
Vol 49 (6) ◽  
pp. 2522-2524 ◽  
Author(s):  
Jin-Yong Jeong ◽  
Hyun Jung Yoon ◽  
Eun Sil Kim ◽  
Yoola Lee ◽  
Sang-Ho Choi ◽  
...  

ABSTRACT qnr was detected in 2 of 260 Escherichia coli clinical isolates collected from a Korean hospital during the period 2001 to 2003. The two strains were not clonally related. qnr was located in In4 family class 1 integrons of original structure, downstream of orf513 and upstream from another resistance gene (dfrA3b) and a gene of unknown function (orf105). Transfer of the qnr determinant by conjugation could be detected from only one strain.


2006 ◽  
Vol 50 (2) ◽  
pp. 799-802 ◽  
Author(s):  
Aránzazu Valverde ◽  
Rafael Cantón ◽  
Juan Carlos Galán ◽  
Patrice Nordmann ◽  
Fernando Baquero ◽  
...  

ABSTRACT An unusual In0-like class 1 integron containing a common region that includes the putative recombinase gene named orf513 (CR1) and bla CTX-M-2 was characterized from Escherichia coli. The integron contained an unusual gene cassette array, estX-aadA1, embedded between the 5′-conserved segment (5′-CS) and 3′-CS1 regions and was flanked by mer-Tn21 sequences downstream of the tni truncated module. This element constitutes one of the few examples of CR1-bearing class 1 integrons that has been fully characterized.


2017 ◽  
Vol 30 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Verónica Antelo ◽  
Anne Marie Guerout ◽  
Didier Mazel ◽  
Valeria Romero ◽  
José Sotelo-Silveira ◽  
...  

AbstractA total of 63 psychrotolerant bacteria exhibiting resistance to various antibiotics, such as ampicillin, streptomycin and/or trimethoprim, were isolated from diverse sites varying in terms of human influence, from obvious presence to probable absence, on Fildes Peninsula (King George Island, South Shetland Islands). The presence of class 1 integrons in some of these antibiotic resistant isolates was further determined. Plasmids from two isolates (HP19 and CN11) were transferred to Escherichia coli DH5α by conjugation. Sequence analysis of the plasmid from the HP19 isolate exhibited high similarity (~99%) to plasmid p34998-210.894kb of Enterobacter hormaechei subsp. steigerwaltii of clinical origin and confirmed the presence of a dfrA14 cassette in a class 1 integron context. 16S rRNA gene sequence analysis of five of these psychrotolerant isolates indicated similarity with environmental bacteria previously identified as Enterobacter species. Together, these results confirm that there may be no pristine niches for antibiotic resistance gene dissemination.


2018 ◽  
Vol 6 (4) ◽  
pp. 99 ◽  
Author(s):  
Rocío Colello ◽  
Alejandra Krüger ◽  
José Conza ◽  
John Rossen ◽  
Alexander Friedrich ◽  
...  

The aim of this study was to investigate the presence of class 1 integrons in a collection of Shiga toxin-producing Escherichia coli (STEC) from different origins and to characterize pheno- and genotypically the antimicrobial resistance associated to them. A collection of 649 isolates were screened for the class 1 integrase gene (intI1) by Polymerase chain reaction The variable region of class 1 integrons was amplified and sequenced. Positive strains were evaluated for the presence of antimicrobial resistance genes with microarray and for antimicrobial susceptibility by the disk diffusion method. Seven out of 649 STEC strains some to serogroups, O26, O103 and O130 isolated from cattle, chicken burger, farm environment and pigs were identified as positive for intl1. Different arrangements of gene cassettes were detected in the variable region of class 1 integron: dfrA16, aadA23 and dfrA1-aadA1. In almost all strains, phenotypic resistance to streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and sulfisoxazole was observed. Microarray analyses showed that most of the isolates carried four or more antimicrobial resistance markers and STEC strains were categorized as Multridrug-resistant. Although antimicrobials are not usually used in the treatment of STEC infections, the presence of Multridrug-resistant in isolates collected from farm and food represents a risk for animal and human health.


Sign in / Sign up

Export Citation Format

Share Document