Characterization of the type III secretion associated low calcium response genes of Vibrio parahaemolyticus RIMD2210633

2012 ◽  
Vol 58 (11) ◽  
pp. 1306-1315 ◽  
Author(s):  
Darren Sarty ◽  
Noel T. Baker ◽  
Euan L. Thomson ◽  
Cheryl Rafuse ◽  
Roger O. Ebanks ◽  
...  

Vibrio parahaemolyticus is a significant human pathogen associated with gastroenteritis. Two V. parahaemolyticus type 3 secretion systems, T3SS-1 and T3SS-2, secrete effector proteins and have been implicated in host-cell cytotoxicity and enterotoxicity, respectively. Vibrio parahaemolyticus T3SS-1 substrates have been identified, although many predicted substrates (based on homologies) remain undetected in secreted fractions and therefore uncharacterized. We have experimentally developed and optimized a secretion assay protocol allowing for reliable and reproducible detection of V. parahaemolyticus T3SS-1 secreted proteins within culture supernatants. The presence of magnesium and absence of calcium were critical factors in promoting type III secretion of protein substrates. Proteomic approaches identified known V. parahaemolyticus secreted effectors in addition to previously unidentified proteins. Isogenic mutants in putative low calcium response genes were generated, and experiments further implicated the genes in secretion and V. parahaemolyticus-mediated host-cell cytotoxicity during infection. These approaches should be valuable towards future detailed genetic and biochemical analyses of T3SS-1 in V. parahaemolyticus.

1998 ◽  
Vol 180 (13) ◽  
pp. 3393-3399 ◽  
Author(s):  
Yixin Fu ◽  
Jorge E. Galán

ABSTRACT Salmonella typhimurium uses of a type III protein secretion system encoded at centisome 63 of its chromosome to deliver effector molecules into the host cell. These proteins stimulate host cell responses such as reorganization of the actin cytoskeleton and activation of transcription factors. One of these effector proteins is SptP, a tyrosine phosphatase that causes disruption of the host cell actin cytoskeleton. A characteristic feature of many substrates of type III secretion systems is their association with specific cytoplasmic chaperones which appears to be required for secretion and/or translocation of these proteins into the host cell. We report here the identification of SicP, a 13-kDa acidic polypeptide that is encoded immediately upstream of sptP. A loss-of-function mutation in sicP resulted in drastically reduced levels of SptP but did not affect sptP expression, indicating that SicP exerts its effect posttranscriptionally. Pulse-chase experiments demonstrated that the loss of SicP leads to increased degradation of SptP. In addition, we show that SicP binds to SptP directly and that the binding site is located between residues 15 and 100 of the tyrosine phosphatase. Taken together, these results indicate that SicP acts as a specific chaperone for SptP.


mSystems ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Ryan L. Sontag ◽  
Ernesto S. Nakayasu ◽  
Roslyn N. Brown ◽  
George S. Niemann ◽  
Michael A. Sydor ◽  
...  

ABSTRACT During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action. Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action.


Author(s):  
Sean Miletic ◽  
Dirk Fahrenkamp ◽  
Nikolaus Goessweiner-Mohr ◽  
Jiri Wald ◽  
Maurice Pantel ◽  
...  

AbstractMany bacterial pathogens strictly rely on the activity of type III secretion systems (T3SSs) to secrete and translocate effector proteins in order to establish infection. The central component of T3SSs is the needle complex, a supramolecular machine which assembles a continuous conduit crossing the bacterial envelope and the host cell membrane to allow bacterial effectors to gain entry into the host cell cytoplasm to modulate signal transduction processes. Disruption of this process impairs pathogenicity, providing an avenue for antimicrobial design. However, the molecular principles underlying T3 secretion remain elusive. Here, we report the first structure of an active Salmonella enterica sv. Typhimurium needle complex engaged with the late effector protein SptP in two functional states, revealing the complete 800Å-long secretion conduit and unravelling the critical role of the export apparatus (EA) subcomplex in T3 secretion. Unfolded substrates enter the EA through a hydrophilic constriction formed by SpaQ proteins, which enables side chain-independent transport, explaining heterogeneity and structural disorder of signal sequences in T3SS effector proteins. Above, a methionine gasket formed by SpaP proteins functions as a gate that dilates to accommodate substrates but prevents leaky pore formation to maintain the physical boundaries of compartments separated by a biological membrane. Following gate penetration, a moveable SpaR loop first folds up to then act akin to a linear ratchet to steer substrates through the needle complex. Together, these findings establish the molecular basis for substrate translocation through T3SSs, improving our understanding of bacterial pathogenicity and motility of flagellated bacteria, and paves the way for the development of novel concepts combating bacterial infections.


2007 ◽  
Vol 20 (4) ◽  
pp. 535-549 ◽  
Author(s):  
Bryan Coburn ◽  
Inna Sekirov ◽  
B. Brett Finlay

SUMMARY Type III secretion systems (T3SSs) are complex bacterial structures that provide gram-negative pathogens with a unique virulence mechanism enabling them to inject bacterial effector proteins directly into the host cell cytoplasm, bypassing the extracellular milieu. Although the effector proteins vary among different T3SS pathogens, common pathogenic mechanisms emerge, including interference with the host cell cytoskeleton to promote attachment and invasion, interference with cellular trafficking processes, cytotoxicity and barrier dysfunction, and immune system subversion. The activity of the T3SSs correlates closely with infection progression and outcome, both in animal models and in human infection. Therefore, to facilitate patient care and improve outcomes, it is important to understand the T3SS-mediated virulence processes and to target T3SSs in therapeutic and prophylactic development efforts.


2010 ◽  
Vol 192 (13) ◽  
pp. 3491-3502 ◽  
Author(s):  
Xiaohui Zhou ◽  
Michael E. Konkel ◽  
Douglas R. Call

ABSTRACT Vibrio parahaemolyticus harbors two type III secretion systems (T3SSs; T3SS1 and T3SS2), of which T3SS1 is involved in host cell cytotoxicity. T3SS1 expression is positively regulated by ExsA, and it is negatively regulated by ExsD. We compared the secretion profiles of a wild-type strain (NY-4) of V. parahaemolyticus with those of an ExsD deletion mutant (ΔexsD) and with a strain of NY-4 that overexpresses T3SS1 (NY-4:pexsA). From this comparison, we detected a previously uncharacterized protein, Vp1659, which shares some sequence homology with LcrV from Yersinia. We show that vp1659 expression is positively regulated by ExsA and is negatively regulated by ExsD. Vp1659 is specifically secreted by T3SS1 of V. parahaemolyticus, and Vp1659 is not required for the successful extracellular secretion of another T3SS1 protein, Vp1656. Mechanical fractionation showed that Vp1659 is translocated into HeLa cells in a T3SS1-dependent manner and that deletion of Vp1659 does not prevent VopS from being translocated into HeLa cells during infection. Deletion of vp1659 significantly reduces cytotoxicity when HeLa cells are infected by V. parahaemolyticus, while complementation of the Δvp1659 strain restores cytotoxicity. Differential staining showed that Vp1659 is required to induce membrane permeability in HeLa cells. We also show evidence that Vp1659 is required for actin rearrangement and the induction of autophagy. On the basis of these data, we conclude that Vp1659 is a T3SS1-associated protein that is a component of the secretion apparatus and that it is necessary for the efficient translocation of effector proteins into epithelial cells.


2002 ◽  
Vol 184 (9) ◽  
pp. 2389-2398 ◽  
Author(s):  
Daniela Büttner ◽  
Dirk Nennstiel ◽  
Birgit Klüsener ◽  
Ulla Bonas

ABSTRACT Type III secretion systems (TTSSs) are specialized protein transport systems in gram-negative bacteria which target effector proteins into the host cell. The TTSS of the plant pathogen Xanthomonas campestris pv. vesicatoria, encoded by the hrp (hypersensitive reaction and pathogenicity) gene cluster, is essential for the interaction with the plant. One of the secreted proteins is HrpF, which is required for pathogenicity but dispensable for type III secretion of effector proteins in vitro, suggesting a role in translocation. In this study, complementation analyses of an hrpF null mutant strain using various deletion derivatives revealed the functional importance of the C-terminal hydrophobic protein region. Deletion of the N terminus abolished type III secretion of HrpF. Employing the type III effector AvrBs3 as a reporter, we show that the N terminus of HrpF contains a signal for secretion but not a functional translocation signal. Experiments with lipid bilayers revealed a lipid-binding activity of HrpF as well as HrpF-dependent pore formation. These data indicate that HrpF presumably plays a role at the bacterial-plant interface as part of a bacterial translocon which mediates effector protein delivery across the host cell membrane.


2008 ◽  
Vol 76 (9) ◽  
pp. 4282-4289 ◽  
Author(s):  
Toshio Kodama ◽  
Hirotaka Hiyoshi ◽  
Kazuyoshi Gotoh ◽  
Yukihiro Akeda ◽  
Shigeaki Matsuda ◽  
...  

ABSTRACT The type III secretion system (T3SS) translocon complex is composed of several associated proteins, which form a translocation channel through the host cell plasma membrane. These proteins are key molecules that are involved in the pathogenicity of many T3SS-positive bacteria, because they are necessary to deliver effector proteins into host cells. A T3SS designated T3SS2 of Vibrio parahaemolyticus is thought to be related to the enterotoxicity of this bacterium in humans, but the effector translocation mechanism of T3SS2 is unclear because there is only one gene (the VPA1362 gene) in the T3SS2 region that is homologous to other translocon protein genes. It is also not known whether the VPA1362 protein is functional in the translocon of T3SS2 or whether it is sufficient to form the translocation channel of T3SS2. In this study, we identified both VPA1362 (designated VopB2) and VPA1361 (designated VopD2) as T3SS2-dependent secretion proteins. Functional analysis of these proteins showed that they are essential for T3SS2-dependent cytotoxicity, for the translocation of one of the T3SS2 effector proteins (VopT), and for the contact-dependent activity of pore formation in infected cells in vitro. Their targeting to the host cell membrane depends on T3SS2, and furthermore, they are necessary for T3SS2-dependent enterotoxicity in vivo. These results indicate that VopB2 and VopD2 act as translocon proteins of V. parahaemolyticus T3SS2 and hence have a critical role in the T3SS2-dependent enterotoxicity of this bacterium.


2010 ◽  
Vol 10 (1) ◽  
pp. 329 ◽  
Author(s):  
Ksenia Matlawska-Wasowska ◽  
Rebecca Finn ◽  
Ana Mustel ◽  
Conor P O'Byrne ◽  
Alan W Baird ◽  
...  

2010 ◽  
Vol 78 (12) ◽  
pp. 4999-5010 ◽  
Author(s):  
Da-Kang Shen ◽  
Saroj Saurya ◽  
Carolin Wagner ◽  
Hiroaki Nishioka ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacterial pathogens. Upon cell contact, they inject effector proteins directly into eukaryotic cells through a needle protruding from the bacterial surface. Host cell sensing occurs through a distal needle “tip complex,” but how this occurs is not understood. The tip complex of quiescent needles is composed of IpaD, which is topped by IpaB. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which other virulence effector proteins may be translocated. IpaB is required for regulation of secretion and may be the host cell sensor. It binds needles via its extreme C-terminal coiled coil, thereby likely positioning a large domain containing its hydrophobic regions at the distal tips of needles. In this study, we used short deletion mutants within this domain to search for regions of IpaB involved in secretion regulation. This identified two regions, amino acids 227 to 236 and 297 to 306, the presence of which are required for maintenance of IpaB at the needle tip, secretion regulation, and normal pore formation but not invasion. We therefore propose that removal of either of these regions leads to an inability to block secretion prior to reception of the activation signal and/or a defect in host cell sensing.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Julia V. Monjarás Feria ◽  
Matthew D. Lefebre ◽  
York-Dieter Stierhof ◽  
Jorge E. Galán ◽  
Samuel Wagner

ABSTRACTType III secretion systems (T3SSs) are multiprotein machines employed by many Gram-negative bacteria to inject bacterial effector proteins into eukaryotic host cells to promote bacterial survival and colonization. The core unit of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins through the bacterial envelope. A distinct feature of the T3SS is that protein export occurs in a strictly hierarchical manner in which proteins destined to form the needle complex filament and associated structures are secreted first, followed by the secretion of effectors and the proteins that will facilitate their translocation through the target host cell membrane. The secretion hierarchy is established by complex mechanisms that involve several T3SS-associated components, including the “switch protein,” a highly conserved, inner membrane protease that undergoes autocatalytic cleavage. It has been proposed that the autocleavage of the switch protein is the trigger for substrate switching. We show here that autocleavage of theSalmonella entericaserovar Typhimurium switch protein SpaS is an unregulated process that occurs after its folding and before its incorporation into the needle complex. Needle complexes assembled with a precleaved form of SpaS function in a manner indistinguishable from that of the wild-type form. Furthermore, an engineered mutant of SpaS that is processed by an external protease also displays wild-type function. These results demonstrate that the cleavage eventper sedoes not provide a signal for substrate switching but support the hypothesis that cleavage allows the proper conformation of SpaS to render it competent for its switching function.IMPORTANCEBacterial interaction with eukaryotic hosts often involves complex molecular machines for targeted delivery of bacterial effector proteins. One such machine, the type III secretion system of some Gram-negative bacteria, serves to inject a multitude of structurally diverse bacterial proteins into the host cell. Critical to the function of these systems is their ability to secrete proteins in a strict hierarchical order, but it is unclear how the mechanism of switching works. Central to the switching mechanism is a highly conserved inner membrane protease that undergoes autocatalytic cleavage. Although it has been suggested previously that the autocleavage event is the trigger for substrate switching, we show here that this is not the case. Rather, our results show that cleavage allows the proper conformation of the protein to render it competent for its switching function. These findings may help develop inhibitors of type III secretion machines that offer novel therapeutic avenues to treat various infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document