Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest

2003 ◽  
Vol 33 (11) ◽  
pp. 2228-2237 ◽  
Author(s):  
Preston R Aldrich ◽  
George R Parker ◽  
Charles H Michler ◽  
Jeanne Romero-Severson

The red oaks (Quercus section Lobatae) include important timber species, but we know little about their gene pools. Red oak species can be difficult to identify, possibly because of extensive interspecific hybridization, although most evidence of this is morphological. We used 15 microsatellite loci to examine the genetic composition of a red oak community in 20.6 ha of an Indiana old-growth forest. The community included northern red oak (Quercus rubra L.), Shumard oak (Quercus shumardii Buckl.), and pin oak (Quercus palustris Muenchh.). Species were identified using whole-tree silvic characters, the approach most often implemented by foresters. We found high genetic diversity within species but limited genetic differences between species. Phenetic clustering showed that Q. rubra and Q. shumardii were more genetically similar than either was to Q. palustris, but a neighbor-joining tree revealed that individuals of the different species did not resolve into single-species clusters. We identified four mixed-species subpopulations using Structure, a computer program based on Monte Carlo simulation. The three largest groups are consistent with the following biological interpretations: (i) pure Q. rubra, (ii) Q. rubra, Q. shumardii, and their hybrids, and (iii) Q. rubra, Q. shumardii, Q. palustris, and their hybrids. We discuss the implications of these findings for the whole-tree silvic approach to selection and for management of the red oak gene pool.

1981 ◽  
Vol 11 (3) ◽  
pp. 689-695 ◽  
Author(s):  
Craig G. Lorimer

Mortality and growth rates of trees in various crown classes and size classes were analyzed from 40-year permanent plot records of slope and ravine forest dominated by chestnut oak (Quercusprinus L.) and northern red oak (Quercusrubra L.). Average 5-year mortality rates for suppressed trees ≥2.5 cm dbh of chestnut oak and red oak in the slope forest were 26 and 45%, respectively. None of the suppressed red oaks survived the 40-year period, compared with 14% of the chestnut oaks and 33% of the red maples (Acerrubrum L.). Mortality of oak trees in the intermediate crown class was less than half that of suppressed trees, but still much higher than that of maples and birches on the tracts. Survival was reasonably high for oaks as long as the top of the crown was receiving direct sunlight, but the expected 40-year survival rate of red oaks in such a position is only 20%, with an average growth rate of 1.0 mm in diameter per year. Curves and equations expressing average mortality and growth rates at various levels of competition are presented for each species.


2004 ◽  
Vol 22 (2) ◽  
pp. 75-79
Author(s):  
Lisa E. Richardson-Calfee ◽  
J. Roger Harris ◽  
Jody K. Fanelli

Abstract Seasonal effects on transplant establishment of balled-and-burlapped (B&B) shade trees are not well documented. Early post-transplant root growth and aboveground growth over a 3-year period were therefore determined for November-and March-transplanted northern red oak (Quercus rubra L.) and willow oak (Q. phellos L.). Survival of red oak was 100% for both treatments. Survival of November-and March-transplanted willow oak was 67% and 83%, respectively. No new root growth was observed outside or within the root balls of either species upon excavation in January. New root growth was evident when trees of both species were excavated in April, indicating that root system regeneration of November-transplanted trees occurs in late winter and/or early spring, not late fall and/or early winter. November-transplanted red oak, but not willow oak, grew more roots by spring bud break than March-transplanted trees. However, little difference in height growth and trunk expansion was evident between the November-and March-transplanted red oaks throughout the 3 years following transplant. While height growth of willow oak was nearly identical between treatments after 3 years, November transplants exhibited greater trunk diameter increase for all 3 years. Overall, season of transplant had little effect on height and trunk diameter increase of red oak, even though November-transplanted trees grew more roots prior to the first bud break following transplant. Among the willow oaks that survived, season of transplant had little effect on new root growth and height growth, but November transplanting resulted in greater trunk expansion. However, when the mortality rate of November-transplanted willow oak is taken into consideration, March may be a better time to transplant willow oak in climates similar to southwest Virginia.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Jayesh B. Samtani ◽  
John B. Masiunas ◽  
James E. Appleby

Previous research by the authors found simulated acetochlor (with atrazine) and s-metolachlor drift to white oak at the leaf unfolding stage caused loss of interveinal tissues (leaf tatters). Reports of leaf tatters in the landscape and nursery settings are more common on white oak (Quercus alba L.) than on northern red oak (Quercus rubra L.). Our objectives were to determine if white and northern red oak differed in susceptibility to chloroacetanilide herbicides, if injury varied between chloroacetanilide herbicides, and if adding atrazine increased leaf injury. Two-year-old seedlings at the leaf unfolding stage were treated with acetochlor, s-metolachlor, and dimethenamid-P alone or combined with atrazine at 1%, 10%, and 25% of the standard field use rate. Within 6 days, all chloroacetanilides at 10% and 25% field use rates, alone or combined with atrazine, caused leaf tatter injury in both species. Acetochlor, s-metolachlor, and dimethenamid-P caused a similar type of leaf injury. Atrazine did not cause loss of leaf tissues or increase injury from chloroacetanilides. At 1% field use rate, only acetochlor, acetochlor + atrazine, and dimethenamid-P caused leaf injury to northern red oaks. The white oaks were not injured by all of the chloroacetanilide treatments at 1% field use rate. The northern red oaks were slightly more susceptible to chloroacetanilides compared with the white oaks. A second study found acetochlor only injured northern red oak when applied at the leaf unfolding stage and only at 25% of field use rate. Acetochlor at 1% field use rate did not injure red oak. Research is needed to explain the greater frequency of leaf tatters on white oaks than on northern red oaks in the landscape and to develop strategies to avoid tree injury.


2005 ◽  
Vol 96 (6) ◽  
pp. 627-634 ◽  
Author(s):  
P. R. Aldrich ◽  
J. C. Glaubitz ◽  
G. R. Parker ◽  
O. E. Rhodes ◽  
C. H. Michler

2011 ◽  
Vol 35 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Laurel J. Haavik ◽  
Frederick M. Stephen

Abstract We used dendrochronological techniques to develop an optimal sampling strategy for the purpose of investigating the history of red oak borer (Enaphalodes rufulus [Haldeman]) population patterns within northern red oaks (Quercus rubra L.). We cut the entire length of three northern red oak tree boles into cross-sections, sanded top and bottom surfaces of each cross-section, and dated all scars within each bole. Our goal was to devise a strategy to reduce the amount of bole sampled without compromising the data necessary to accurately estimate historical population patterns of red oak borer. When we tested four possible sampling strategies and compared them with the entire-tree data sets from which they originated, we found no statistical differences in the distribution of scar counts by year. We also assessed processing time and found that compared with sampling an entire host bole, sampling strategies that include the lower 20% or 30% of boles would reduce labor efforts by 55–63%. We suggest that development of similar sampling methods for other bark or wood-boring species may be possible if the relationship between insect life history and annual tree-ring formation, as well as the general spatial and temporal distribution of insect evidence within trees, is known.


Author(s):  
Katharina Burkardt ◽  
Christian Ammer ◽  
Dominik Seidel ◽  
Torsten Vor

Northern red oak wood is valuable for a variety of applications not only in its natural distribution range in North America, but also in Europe. Timber quality and stem diameter largely determine timber prices and respective uses. Silvicultural management is key to influencing tree growth and stem quality. In Germany, crop tree thinning is currently the standard treatment, while in Canada the shelterwood system is common practice. The objective of this study was to compare stem characteristics related to stem quality of northern red oaks from Canada with those from Germany to determine effects of different silvicultural treatments on stem quality. We examined stem characteristics from a total of 150 dominant northern red oaks in Canadian and German forest stands using the terrestrial laser scanning approach. Northern red oak stems in Canada (shelterwood system) were significantly straighter, whereas German stems (crop tree thinning approach) were significantly smoother on the surface and rounder on the upper parts of the stems (height 4 – 8 m). The number of bark anomalies decreased with increasing tree competition, indicating that competition is the main driver influencing external stem form and the occurrence or persistence of bark anomalies.


2000 ◽  
Vol 30 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Karin Heinemann ◽  
Thomas Kitzberger ◽  
Thomas T Veblen

We experimentally examined the influences of within-gap environmental heterogeneity on regeneration patterns of Nothofagus pumilio (Poepp. & Endl.) Krasser near the xeric limit of its distribution in northern Patagonia, Argentina. Results from this xeric old-growth forest are compared with patterns previously described for the same species in mesic forests. Survival of N. pumilio seedlings beneath tree-fall gaps in this relatively xeric forest appears to be strongly influenced by moisture availability. Seedlings and saplings that have survived this demographic bottleneck are found at microsites where soil water potentials are higher, such as in the shady northern edges of tree-fall gaps (Ψ = -0.46 MPa compared with less than -0.6 MPa in other gap positions) and on coarse woody debris (Ψ = -0.29 MPa, compared with -0.51 MPa on the forest floor). Although gap creation in this dry N. pumilio forest is favorable to tree regeneration by releasing light resources, decreased water resources may switch the system from a light- to a water-limited system in some positions of the gap. This may explain the lack of regeneration of N. pumilio often observed after creation of large gaps towards the xeric end of its range and needs to be considered in the management of this important timber species.


2003 ◽  
Vol 20 (3) ◽  
pp. 104-108 ◽  
Author(s):  
Felix Ponder

Abstract The performance of planted northern red oak (Quercus rubra L.), black walnut (Juglans nigra L.), and green ash (Fraxinus pennsylvanica Marsh.), with and without tree shelters, was evaluated 10 yr after planting. Northern red oak was planted in three harvested forest openings, and black walnut and green ash were planted in a cultivated field. Survival of northern red oak with tree shelters was significantly (P < 0.05) higher than northern red oak without shelters only for year 3. Survival differences between tree shelter treatments for black walnut and green ash were not significant. However, overall survival of green ash declined rapidly after year 5. Trees began to exit the 120-cm-tall shelters after 2 yr, but not in large numbers until the fourth year. Sheltered oaks were significantly taller than unsheltered oaks at year 10, and sheltered oaks had more height growth than unsheltered oaks at year 5, but not at year 10. Except for year 1, neither height nor height growth for black walnut was significantly different between tree shelter treatments. Green ash was taller and had more height growth with shelters than without shelters in year 1, but had more height growth without shelters than with shelters in year 5. Diameter growth at breast height did not differ between treatments for any of the three species. The greater height of sheltered northern red oaks compared to unsheltered northern red oaks could increase the opportunity of sheltered oaks to achieve dominant and codominant positions in the developing stands. North. J. Appl. For. 20(3):104–108.


2017 ◽  
Vol 7 (1-2) ◽  
pp. 73-107
Author(s):  
Orsolya Perger ◽  
Curtis Rollins ◽  
Marian Weber ◽  
Wiktor Adamowicz ◽  
Peter Boxall

Sign in / Sign up

Export Citation Format

Share Document