Leaf litter chemistry controls on decomposition of Pacific Northwest trees and woody shrubs

2004 ◽  
Vol 34 (10) ◽  
pp. 2131-2147 ◽  
Author(s):  
Y S Valachovic ◽  
B A Caldwell ◽  
K Cromack Jr. ◽  
R P Griffiths

The effects of initial leaf litter chemistry on first-year decomposition rates were studied for 16 common Pacific Northwest conifers, hardwoods, and shrubs at the H.J. Andrews Experimental Forest in western Oregon. Leaf litters were analyzed for C, N, P, K, Ca, Mg, proximate organic fractions (nonpolar, polar, acid-hydrolyzable extractives, acid-hydrolyzable lignin, and acid-unhydrolyzable residue, previously termed "Klason lignin"), and biochemical components (total phenolics, reactive polyphenols, water-soluble carbohydrates, water-soluble proanthocyanidins, and water- and acid-unhydrolyzable proanthocyanidins). By including measurements of reactive and residual phenolic fractions and acid-hydrolyzable lignin, these analytical methods improve upon traditional proximate leaf litter analyses. Significant differences in litter chemistries and decomposition rates were found between species. For all species combined, the 1-year decay rate (k) values had highly significant correlations (P < 0.001) with 30 out of the 36 initial chemistry variables tested in this study. The three highest correlations were with acid-unhydrolyzable proanthocyanidins, lignocellulose index, and acid-unhydrolyzable residue (r = 0.83, –0.81, –0.80, respectively, with P < 0.0001 and n = 339). We found that no single litter chemistry variable was a universal predictor of the 1-year k value for each of the individual 16 species studied, though phenolic components were more frequent significant (P < 0.001) predictors of decomposition rate.

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Luz Boyero ◽  
Naiara López-Rojo ◽  
Javier Pérez ◽  
Alan M. Tonin ◽  
Francisco Correa-Araneda ◽  
...  

AbstractLeaf litter decomposition is a key process in stream ecosystems, the rates of which can vary with changes in litter quality or its colonization by microorganisms. Decomposition in streams is increasingly used to compare ecosystem functioning globally, often requiring the distribution of litter across countries. It is important to understand whether litter sterilization, which is required by some countries, can alter the rates of decomposition and associated processes. We examined whether litter sterilization with gamma irradiation (25 kGy) influenced decomposition rates, litter stoichiometry, and colonization by invertebrates after weeks of instream incubation within coarse-mesh and fine-mesh litterbags. We used nine plant species from three families that varied widely in litter chemistry but found mostly consistent responses, with no differences in decomposition rates or numbers of invertebrates found at the end of the incubation period. However, litter stoichiometry differed between irradiated and control litter, with greater nutrient losses (mostly phosphorus) in the former. Therefore, the effects of irradiation on litter chemistry should be taken into account in studies focused on stoichiometry but not necessarily in those focused on decomposition rates, at least within the experimental timescale considered here.


2021 ◽  
Author(s):  
Shanshan Song ◽  
Xiaokang Hu ◽  
Jiangling Zhu ◽  
Tianli Zheng ◽  
Fan Zhang ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Runbo Luo ◽  
Yangdong Zhang ◽  
Fengen Wang ◽  
Kaizhen Liu ◽  
Guoxin Huang ◽  
...  

The objective was to study the effects of sugar cane molasses addition on the fermentation quality and tastes of alfalfa silage. Fresh alfalfa was ensiled with no additive (Control), 1% molasses (M1), 2% molasses (M2), and 3% molasses (M3) for 206 days. The chemical composition and fermentation characteristics of the alfalfa silages were determined, the microbial communities were described by 16S rRNA sequencing, and the tastes were evaluated using an electronic tongue sensing system. With the amount of added molasses (M), most nutrition (dry matter and crude protein) was preserved and water-soluble carbohydrates (WSC) were sufficiently used to promote the fermentation, resulting in a pH reduction from 5.16 to 4.48. The lactic acid (LA) content and LA/acetic acid (AA) significantly increased, indicating that the fermentation had turned to homofermentation. After ensiling, Enterococcus and Lactobacillus were the dominant genus in all treatments and the undesirable microbes were inhibited, resulting in lower propionic acid (PA), butyric acid (BA), and NH3-N production. In addition, bitterness, astringency, and sourness reflected tastes of alfalfa silage, while umami and sourness changed with the amount of added molasses. Therefore, molasses additive had improved the fermentation quality and tastes of alfalfa silage, and the M3 group obtained the ideal pH value (below 4.5) and the best condition for long-term preservation.


1970 ◽  
Vol 75 (3) ◽  
pp. 517-521 ◽  
Author(s):  
D. I. H. Jones

SUMMARYThe effect of three levels of N fertilizer on the ensiling characteristics of S. 24 perennial ryegrass and S. 37 cocksfoot have been examined during first growth in two growing seasons. The effects of sucrose supplementation, inoculation with Lactobacillus plantarum and wilting were also examined in certain cuts. All silages were made in the laboratory using a small scale vacuum silage technique.The perennial ryegrass herbage was higher in water soluble carbohydrates than the cocksfoot, N fertilizers decreased soluble carbohydrates and dry-matter content in both species. Buffering capacity was not consistently different between grasses or between N levels.Herbage was cut at two stages of maturity in the first year. In the first cut (8 days before ear emergence), perennial ryegrass silages were well preserved irrespective of the amount of N applied to the grass. Cocksfoot silages were well preserved only when the lowest level of N fertilizer had been applied (50 kg/ha). Supplementation of cocksfoot with sucrose prior to ensiling markedly improved silage quality, but inoculation had no effect. In the second cut (26 days after ear emergence) the grasses were higher in drymatter content and showed a lower buffering capacity, but neither ryegrass nor cocksfoot silages were well preserved unless supplemented with sucrose prior to ensiling.In the second year of the experiment only one cut was taken (9 days after ear emergence). As in the previous year, silages made from herbage at a late stage of growth were poorly preserved. Wilting prior to ensiling resulted in well-preserved silages.It is concluded that the need for additives and wilting to ensure satisfactory preservation varies in relation to the variety of grass used and its stage of growth.


2013 ◽  
Vol 64 (4) ◽  
pp. 399 ◽  
Author(s):  
C. Oldham ◽  
D. Real ◽  
H. J. Bailey ◽  
D. Thomas ◽  
A. Van Burgel ◽  
...  

We hypothesised (i) that sheep grazing a monoculture of tedera (Bituminaria bituminosa (L.) C.H. Stirton var. albomarginata and var. crassiuscula) would not show signs of photosensitisation or ill health, and (ii) that when given free grazing choice they would show a repeatable preference for certain accessions of tedera related to their chemical composition. We tested this by grazing a group of young merino wethers on a monoculture containing seven accessions of tedera for 21 days. General health was assessed via daily visual checks for skin pinkness on the nose and ears, weekly measures of liveweight, condition score, and blood analysis compared with a group of control sheep fed wheaten hay ad libitum. The Chesson–Manly selection index was used to examine the relative preference of sheep for the seven accessions of tedera over the 21 days. Each accession of tedera was sampled weekly to estimate the dry matter on offer, and these samples were also analysed for crude protein, neutral detergent fibre, acid detergent fibre, in vitro digestibility, water soluble carbohydrates, minerals, and concentrations of the furanocoumarins psoralen and angelicin. None of the sheep showed any signs of ill health, with all blood parameters being within the normal reference range. All sheep gained weight and body condition over the 21 days. The difference in the rate of gain in condition score in favour of the sheep grazing tedera over the 21 days (0.014 v. 0.002 unit/sheep.day) was significant (P < 0.001). Sheep showed repeated preference for accessions T31 and T43 (α >0.143). Nutritive value of all accessions of tedera was high. However, only acid detergent fibre and neutral detergent fibre affected the relative preference of the sheep (P < 0.05) and they were only weakly correlated (r2 = 0.208 and 0.165, respectively). We conclude that there are accessions of tedera that are preferred by sheep that could be used to fill the autumn feed gap experienced in the south of Western Australia without any risk to the health of the sheep.


2015 ◽  
Vol 537 ◽  
pp. 213-224 ◽  
Author(s):  
Pierre Lucisine ◽  
Antoine Lecerf ◽  
Michaël Danger ◽  
Vincent Felten ◽  
Delphine Aran ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 25
Author(s):  
David Candel-Pérez ◽  
J. Bosco Imbert ◽  
Maitane Unzu ◽  
Juan A. Blanco

The promotion of mixed forests represents an adaptation strategy in forest management to cope with climate change. The mixing of tree species with complementary ecological traits may modify forest functioning regarding productivity, stability, or resilience against disturbances. Litter decomposition is an important process for global carbon and nutrient cycles in terrestrial ecosystems, also affecting the functionality and sustainability of forests. Decomposition of mixed-leaf litters has become an active research area because it mimics the natural state of leaf litters in most forests. Thus, it is important to understand the factors controlling decomposition rates and nutrient cycles in mixed stands. In this study, we conducted a litter decomposition experiment in a Scots pine and European beech mixed forest in the province of Navarre (north of Spain). The effects of forest management (i.e., different thinning intensities), leaf litter types, and tree canopy on mass loss and chemical composition in such decomposing litter were analysed over a period of three years. Higher decomposition rates were observed in leaf litter mixtures, suggesting the existence of positive synergies between both pine and beech litter types. Moreover, a decomposition process was favoured under mixed-tree canopy patches. Regarding thinning treatments significant differences on decomposition rates disappeared at the end of the study period. Time influenced the nutrient concentration after the leaf litter incubation, with significant differences in the chemical composition between the different types of leaf litter. Higher Ca and Mg concentrations were found in beech litter types than in pine ones. An increase in certain nutrients throughout the decomposition process was observed due to immobilization by microorganisms (e.g., Mg in all leaf litter types, K only in beech leaves, P in thinned plots and under mixed canopy). Evaluating the overall response in mixed-leaf litters and the contribution of single species is necessary for understanding the litter decomposition and nutrient processes in mixed-forest ecosystems.


1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.


Sign in / Sign up

Export Citation Format

Share Document