Pre- and post-European settlement fire history of red pine dominated forest ecosystems of Seney National Wildlife Refuge, Upper Michigan

2008 ◽  
Vol 38 (9) ◽  
pp. 2497-2514 ◽  
Author(s):  
Igor Drobyshev ◽  
P. Charles Goebel ◽  
David M. Hix ◽  
R. Gregory Corace ◽  
Marie E. Semko-Duncan

To understand the dynamics of fire in red pine ( Pinus resinosa Ait.) forest ecosystems that once dominated areas of the northern Lake States, we dendrochronologically reconstructed the fire regime prior to European settlement (pre-1860), after European settlement (1860–1935), and postrefuge establishment (post-1935) for different portions (wilderness and nonwilderness) and landforms (sand ridges and outwash channels) of the Seney National Wildlife Refuge (SNWR) in eastern Upper Michigan. Using data from 50 sites, we found that the cumulative number of fires showed a slow rate of accumulation from the 1700s to 1859, a steeper pattern suggesting higher fire occurrence from 1860 to 1935, and a return to fewer fires after 1935. Prior to European settlement, the fire cycle (FC) of sand ridge landforms interspersed within a poorly drained lacustrine plain in the Seney Wilderness Area was 91–144 years. This was longer than on glacial outwash channel landforms (53 years) and on sand ridge landforms interspersed within lacustrine plains located outside of the wilderness (47 years). The FC was also shorter (30 years) during this period and has subsequently increased (149–1090 years) after SNWR establishment. Differences in fire regimes among landform types were minor relative to the temporal variation in fire regimes among the three time periods.

2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2019 ◽  
pp. 31
Author(s):  
Catarina Romão Sequeira ◽  
Cristina Montiel-Molina ◽  
Francisco Castro Rego

The Iberian Peninsula has a long history of fire, as the Central Mountain System, from the Estrela massif in Portugal to the Ayllón massif in Spain, is a major fire-prone area. Despite being part of the same natural region, there are different environmental, political and socio-economic contexts at either end, which might have led to distinct human causes of wildfires and associated fire regimes. The hypothesis for this research lies in the historical long-term relationship between wildfire risks and fire use practices within a context of landscape dynamics. In addition to conducting an analysis of the statistical period, a spatial and temporal multiscale approach was taken by reconstructing the historical record of prestatistical fires and land management history at both ends of the Central Mountain System. The main result is the different structural causes of wildland fires at either end of the Central Mountain System, with human factors being more important than environmental factors in determining the fire regimes in both contexts. The study shows that the development of the fire regime was non-linear in the nineteenth and twentieth centuries, due to broader local human context factors which led to a shift in fire-use practices.


2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.


2016 ◽  
Vol 64 (5) ◽  
pp. 427 ◽  
Author(s):  
Louise M. Romanin ◽  
Feli Hopf ◽  
Simon G. Haberle ◽  
David M. J. S. Bowman

Using pollen and charcoal analysis we examined how vegetation and fire regimes have changed over the last 600 years in the Midlands of Tasmania. Sediment cores from seven lagoons were sampled, with a chronology developed at one site (Diprose Lagoon) using 210Pb and 14C dating. Statistical contrasts of six cores where Pinus served as a marker of European settlement in the early 19th Century and showed significant changes in pollen composition following settlement with (a) influx of ruderal exotic taxa including Plantago lanceolata L., Brassicaceae, Asteraceae (Liguliflorae) and Rumex, (b) increase in pollen of the aquatics Myriophyllum spp. and Cyperaceae, (c) a decline in native herbaceous pollen taxa, including Chenopodiaceae and Asteraceae (Tubuliflorae) and (d) a decline in Allocasuarina and an initial decline and then increase of Poaceae. The presence of Asteraceae (Liguliflorae) in the pre-European period suggests that an important root vegetable Microseris lanceolata (Walp.) Sch.Bip. may have been abundant. Charcoal deposition was low in the pre-European period and significantly increased immediately after European arrival. Collectively, these changes suggest substantial ecological impacts following European settlement including cessation of Aboriginal traditions of fire management, a shift in hydrological conditions from open water lagoons to more ephemeral herb covered lagoons, and increased diversity of alien herbaceous species following pasture establishment.


2016 ◽  
Author(s):  
S. Hantson ◽  
A. Arneth ◽  
S. P. Harrison ◽  
D. I. Kelley ◽  
I. C. Prentice ◽  
...  

Abstract. Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project – FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what lessons may be learned from FireMIP.


2012 ◽  
Vol 21 (4) ◽  
pp. 328 ◽  
Author(s):  
Steen Magnussen ◽  
Stephen W. Taylor

Year-to-year variation in fire activity in Canada constitutes a key challenge for fire management agencies. Interagency sharing of fire management resources has been ongoing on regional, national and international scales in Canada for several decades to better cope with peaks in resource demand. Inherent stressors on these schemes determined by the fire regimes in constituent jurisdictions are not well known, nor described by averages. We developed a statistical framework to examine the likelihood of regional synchrony of peaks in fire activity at a timescale of 1 week. Year-to-year variations in important fire regime variables and 48 regions in Canada are quantified by a joint distribution and profiled at the Provincial or Territorial level. The fire regime variables capture the timing of the fire season, the average number of fires, area burned, and the timing and extent of annual maxima. The onset of the fire season was strongly correlated with latitude and longitude. Regional synchrony in the timing of the maximum burned area within fire seasons delineates opportunities for and limitations to sharing of fire suppression resources during periods of stress that were quantified in Monte Carlo simulations from the joint distribution.


2013 ◽  
Vol 43 (8) ◽  
pp. 757-767 ◽  
Author(s):  
Patrick H. Brose ◽  
Daniel C. Dey ◽  
Richard P. Guyette ◽  
Joseph M. Marschall ◽  
Michael C. Stambaugh

Understanding past fire regimes is necessary to justify and implement restoration of disturbance-associated forests via prescribed fire programs. In eastern North America, the characteristics of many presettlement fire regimes are unclear because of the passage of time. To help clarify this situation, we developed a 435-year fire history for the former conifer forests of northern Pennsylvania. Ninety-three cross sections of fire-scarred red pines (Pinus resinosa Aiton) collected from three sites were analyzed to determine common fire regime characteristics. Prior to European settlement, fires occurred every 35–50 years and were often large dormant-season burns that sometimes initiated red pine regeneration. American Indians probably ignited these fires. Fire occurrence had a weak association with multiyear droughts. After European settlement started around 1800, fires occurred every 5–7 years due to widespread logging. Fire size and seasonality expanded to include small growing-season fires. The weak drought–fire association ceased. In the early 1900s, logging ended and wildfire control began. Since then, fires have been nearly absent from the sites despite several multiyear droughts in the 20th century. The human influences of cultural burning, logging, and fire exclusion are more important than the influence of drought to the fire regimes of northern Pennsylvania.


2007 ◽  
Vol 37 (9) ◽  
pp. 1605-1614 ◽  
Author(s):  
Russell A. Parsons ◽  
Emily K. Heyerdahl ◽  
Robert E. Keane ◽  
Brigitte Dorner ◽  
Joseph Fall

We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of estimates of Weibull median probability fire intervals (WMPI) to sampling design and to factors that degrade the fire scar record: failure of a tree to record a fire and loss of fire-scarred trees. Accuracy was affected by all of the factors investigated and generally varied with fire regime type. The maximum error was from degradation of the record, primarily because degradation reduced the number of intervals from which WMPI was estimated. The sampling designs were roughly equal in their ability to capture overall WMPI, regardless of fire regime, but the gridded design yielded more accurate estimates of spatial variation in WMPI. Accuracy in WMPI increased with increasing number of points sampled for all fire regimes and sampling designs, but the number of points needed to obtain accurate estimates was greater for fire regimes with complex spatial patterns of fire intervals than for those with relatively homogeneous patterns.


2014 ◽  
Vol 44 (4) ◽  
pp. 365-376 ◽  
Author(s):  
Yan Boulanger ◽  
Sylvie Gauthier ◽  
Philip J. Burton

Broad-scale fire regime modelling is frequently based on large ecological and (or) administrative units. However, these units may not capture spatial heterogeneity in fire regimes and may thus lead to spatially inaccurate estimates of future fire activity. In this study, we defined homogeneous fire regime (HFR) zones for Canada based on annual area burned (AAB) and fire occurrence (FireOcc), and we used them to model future (2011–2040, 2041–2070, and 2071–2100) fire activity using multivariate adaptive regression splines (MARS). We identified a total of 16 HFR zones explaining 47.7% of the heterogeneity in AAB and FireOcc for the 1959–1999 period. MARS models based on HFR zones projected a 3.7-fold increase in AAB and a 3.0-fold increase in FireOcc by 2100 when compared with 1961–1990, with great interzone heterogeneity. The greatest increases would occur in zones located in central and northwestern Canada. Much of the increase in AAB would result from a sharp increase in fire activity during July and August. Ecozone- and HFR-based models projected relatively similar nationwide FireOcc and AAB. However, very high spatial discrepancies were noted between zonations over extensive areas. The proposed HFR zonation should help providing more spatially accurate estimates of future ecological patterns largely driven by fire in the boreal forest such as biodiversity patterns, energy flows, and carbon storage than those obtained from large-scale multipurpose classification units.


2019 ◽  
Vol 286 (1909) ◽  
pp. 20191315 ◽  
Author(s):  
Kimberley J. Simpson ◽  
Jill K. Olofsson ◽  
Brad S. Ripley ◽  
Colin P. Osborne

Coping with temporal variation in fire requires plants to have plasticity in traits that promote persistence, but how plastic responses to current conditions are affected by past fire exposure remains unknown. We investigate phenotypic divergence between populations of four resprouting grasses exposed to differing experimental fire regimes (annually burnt or unburnt for greater than 35 years) and test whether divergence persists after plants are grown in a common environment for 1 year. Traits relating to flowering and biomass allocation were measured before plants were experimentally burnt, and their regrowth was tracked. Genetic differentiation between populations was investigated for a subset of individuals. Historic fire frequency influenced traits relating to flowering and below-ground investment. Previously burnt plants produced more inflorescences and invested proportionally more biomass below ground, suggesting a greater capacity for recruitment and resprouting than unburnt individuals. Tiller-scale regrowth rate did not differ between treatments, but prior fire exposure enhanced total regrown biomass in two species. We found no consistent genetic differences between populations suggesting trait differences arose from developmental plasticity. Grass development is influenced by prior fire exposure, independent of current environmental conditions. This priming response to fire, resulting in adaptive trait changes, may produce communities more resistant to future fire regime changes.


Sign in / Sign up

Export Citation Format

Share Document