Host response to inoculation and behaviour of introduced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings

1989 ◽  
Vol 19 (11) ◽  
pp. 1412-1421 ◽  
Author(s):  
R. M. Danielson ◽  
S. Visser

Pinusbanksiana Lamb, seedlings were inoculated with nine mycorrhizal fungi and outplanted on an oil-sands containment dyke that had been amended with muskeg peat. After one growing season, E-strain (Complexipes), Hebeloma sp., Thelephoraterrestris Ehrh.:Fr., and Laccariaproximo Boudier each formed mycorrhizae with greater than 40% of the new short roots within 10 cm of the stem. Cenococcumgeophilum Fr., Pisolithustinctorius (Pers.) Coker & Couch, Astraeushygrometricus (Pers.) Morgan, Lactariusparadoxus Beardslee & Burlingham, and Sphaerosporellabrunnea (Alb. & Schw.:Fr.) Svrcek & Kubika each formed mycorrhizae with less than 6% of the short roots on egressed laterals. Of the introduced fungi, only E-strain was present in substantial quantities after 3 years. The quantity of short roots converted to mycorrhizae by indigenous fungi was 4, 33, and 72% after 1, 2, and 3 years, respectively. The change in mycorrhizal fungi appeared to be a noncompetitive replacement process, in which the original short root resident fungus died in the near absence of mycorrhizal fungi. At the end of the 3rd year, the major indigenous fungi converting short roots to mycorrhizae were E-strain, Tuber sp., Suillus-like spp., Myceliumradicisatrovirens Melin, and an unidentified basidiomycete. Inoculation with E-strain and Thelephoraterrestris resulted in a 2- to 3-fold increase in shoot weight after 2 years compared with uninoculated seedlings.


1984 ◽  
Vol 14 (1) ◽  
pp. 140-142 ◽  
Author(s):  
R. M. Danielson ◽  
S. Visser ◽  
D. Parkinson

Mycelial slurries prepared from agar plates of ectomycorrhizal fungi were used to inoculate 7-week-old container-grown jack pine. Seven of 15 species formed mycorrhizae after 18 weeks and included Thelephoraterrestris Ehrhart ex Fr., Laccariaproximo Boudier, Hebeloma sp., Pisolithustinctoris (Pers.) Coker & Couch, Sphaerosporellabrunnea (Alb. & Schw. ex Fr.) Svrcek & Kubicka, Cenococcwngeophilum Fr., and an E strain (sensu Mikola) isolate. Species of Tricholoma, Suillus, Amphinema, and Hydnum failed to form mycorrhizae. The use of a mycelial slurry has the advantage of saving considerable time in inoculum preparation and should be useful for experimental purposes.



2000 ◽  
Vol 48 (6) ◽  
pp. 725 ◽  
Author(s):  
Kay Howard ◽  
Bernie Dell ◽  
Giles E. Hardy

Currently in Western Australia, phosphite is being used to contain the root and collar rot pathogen, Phytophthora cinnamomi, in native plant communities. There have been reports of negative effects of phosphite on arbuscular mycorrhiza (AM), so there are concerns that it may have a deleterious effect on other mycorrhizal fungi. Two glasshouse experiments were undertaken to determine the impact of phosphite on eucalypt-associated ectomycorrhizal fungi. In the first experiment, non-mycorrhizal seedlings of Eucalyptus marginata, Eucalyptus globulus and Agonis flexuosa were sprayed to runoff with several concentrations of phosphite, and then planted into soil naturally infested with early colonising mycorrhizal species. Assessments were made of percentage of roots infected with mycorrhizal fungi. There was no significant effect on ectomycorrhizal formation but there was a four-fold increase in AM colonisation of A. flexuosa roots with phosphite application. In the second experiment, E. globulus seedlings mycorrhizal with Pisolithus, Scleroderma and Descolea were treated with different levels of phosphite and infection of new roots by ectomycorrhizal fungi was assessed. There was no significant effect on ectomycorrhizal formation when phosphite was applied at the recommended rate (5 g L–1), while at 10 g L–1 phosphite significantly decreased infection by Descolea.



1991 ◽  
Vol 21 (5) ◽  
pp. 701-706 ◽  
Author(s):  
Mark H. R. Browning ◽  
Roy D. Whitney

Seedlings of jack pine (Pinusbanksiana Lamb.) and black spruce (Piceamariana (Mill.) B.S.P.) were inoculated with liquid cultures of fragmented hyphae of 10 species of ectomycorrhizal fungi and grown in either aseptic culture tubes for 20 weeks or nonaseptic pots for 16 weeks. Seedlings in pots received more total nutrients and produced larger root systems than those in tubes. Four of the fungi produced higher levels of colonization associated with these larger root systems. Short-root density of black spruce was increased compared with that of uninoculated seedlings by inoculation with Laccariabicolor (Maire) Orton, Hebelomacylindrosporum Romagnési, or Thelephoraterrestris Ehrh. ex Fr. Colonization of jack pine by Rhizopogonrubescens (Tul.) Tulasne, L. bicolor, H. cylindrosporum, or Pisolithustinctorius (Pers.) Coker & Couch resulted in greater short-root densities than in uninoculated controls. Inoculation of potted black spruce with Laccariaproxima Boudier resulted in larger shoot weights and those inoculated with H. cylindrosporum had smaller root weights than did uninoculated seedlings. Both fungi resulted in increased shoot/root dry-weight ratios in black spruce. In contrast with black spruce, seedling weights were not affected by inoculation of jack pine with the same fungal species. However, inoculation of jack pine with R. rubescens resulted in a significantly higher shoot/root dry-weight ratio.



2021 ◽  
Vol 193 (4) ◽  
Author(s):  
R. Kelman Wieder ◽  
Melanie A. Vile ◽  
Kimberli D. Scott ◽  
Cara M. Albright ◽  
James C. Quinn ◽  
...  

AbstractIncreasing gaseous emissions of nitrogen (N) and sulfur (S) associated with oil sands development in northern Alberta (Canada) has led to changing regional wet and dry N and S deposition regimes. We assessed the potential for using bog plant/lichen tissue chemistry (N and S concentrations, C:N and C:S ratios, in 10 plant/lichen species) to monitor changing atmospheric N and S deposition through sampling at five bog sites, 3–6 times per growing season from 2009 to 2016. During this 8-year period, oil sands N emissions steadily increased, while S emissions steadily decreased. We examined the following: (1) whether each species showed changes in tissue chemistry with increasing distance from the Syncrude and Suncor upgrader stacks (the two largest point sources of N and S emissions); (2) whether tissue chemistry changed over the 8 year period in ways that were consistent with increasing N and decreasing S emissions from oil sands facilities; and (3) whether tissue chemistry was correlated with growing season wet deposition of NH4+-N, NO3−-N, or SO42−-S. Based on these criteria, the best biomonitors of a changing N deposition regime were Evernia mesomorpha, Sphagnum fuscum, and Vaccinium oxycoccos. The best biomonitors of a changing S deposition regime were Evernia mesomorpha, Cladonia mitis, Sphagnum fuscum, Sphagnum capillifolium, Vaccinium oxycoccos, and Picea mariana. Changing N and S deposition regimes in the oil sands region appear to be influencing N and S cycling in what once were pristine ombrotrophic bogs, to the extent that these bogs may effectively monitor future spatial and temporal patterns of deposition.





2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 380-385 ◽  
Author(s):  
Soraya Marx Bamberg ◽  
Silvio Junio Ramos ◽  
Marco Aurelio Carbone Carneiro ◽  
José Oswaldo Siqueira

Fertilizer application can enhance the nutritional value of plants, such effects being influenced by the presence of arbuscular mycorrhizal fungi (AMF). Nutrients × AMF interactions are well-known for variety of elements but very little has been addressed on biofortification of selenium (Se) in plants grown in tropical soils. The purpose of this study was to evaluate the effect of Se application and AMF inoculation on growth and micronutrient contents on soybean plants as forage grass. The experiments were conducted in a completely randomized factorial design with five Se doses (0.0, 0.5, 1.0, 2.0 and 3.0 mg kg-1 for soybean plants, and 0.0, 0.5, 1.0, 3.0 and 6.0 mg kg-1 for forage plants), with and without AMF inoculation in three replicates. The results showed that soil Se had only slight effect on soybean growth but it caused a two-fold increase on grain yield. However, the growth of forage grass was enhanced by Se application when AMF was present. The AMF inoculation reduced benefit for soybean growth and yield but marked positive effect on forage grass at high doses of Se. Selenium contents in both plants were increased by its application in soil, being such effect proportional to soil applied doses. Selenium application and AMF inoculation had marked effects on micronutrients contents in both soybean plants and forage grass and they may contribute to Se and micronutrient biofortification.



1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.



1983 ◽  
Vol 63 (2) ◽  
pp. 363-375 ◽  
Author(s):  
R. M. DANIELSON ◽  
S. VISSER ◽  
D. PARKINSON

Slender wheatgrass and jack pine were grown in the greenhouse in cores containing a bottom layer of extracted oil sands with four overburdens individually layered over the sand. The overburdens included a muskeg peat, two shallow mineral overburdens and a deep overburden. Mycorrhizal development, microbial respiration and biomass and the degree of decomposition of slender wheatgrass roots in litter bags were determined in each plant species-overburden combination. Both ecto- and vesicular-arbuscular (VA) mycorrhizal inoculum was present in all four overburdens. The symbionts of slender wheatgrass were the "fine endophyte" and Glomus aggregatum. VA development was very low in peat whereas plants in the shallow overburdens became heavily mycorrhizal. Infection did not spread from the overburden layer to roots in the tailing sand. Jack pine roots in the peat and two shallow overburdens were heavily infected after 4 months. The most common symbiont was an ascomycete known as the E-strain. Microbial respiration was highest in the peat and was not influenced by plant species. Microbial biomass was also highest in the peat and much lower in the mineral overburdens. Only in the peat was the amount of microbial biomass larger with slender wheatgrass than with jack pine. Slender wheatgrass roots decomposed most rapidly in the peat overburden and least rapidly in the deep overburden. Key words: Microbial activity, jack pine, slender wheatgrass, mycorrhizae, reclamation, oil sands



Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.





Sign in / Sign up

Export Citation Format

Share Document