Response of northern red oak (Quercusrubra) seedlings to soil solution aluminum

1990 ◽  
Vol 20 (3) ◽  
pp. 331-336 ◽  
Author(s):  
L. E. DeWald ◽  
E. I. Sucoff ◽  
T. Ohno ◽  
C. A. Buschena

The sensitivity of northern red oak (Quercusrubra L.) to soil solution Al was experimentally examined on germinants grown for 10 weeks in a soil sample from the B2/C horizons of a Typic Fragiorthod. Adding AlCl3 raised the solution Al in the saturated paste extract from about 50 to 825 μM in study I and to 392 μM in study II. Phosphorus (KH2PO4) was added in study II. Forty percent of the variation in root growth was related to solution Al, even in study I where severe P deficiency dampened the expression of Al toxicity. Shoot growth was less sensitive to Al. In study II, total root weight was significantly reduced (36%) at 115 μM Al. This is the lowest concentration of Al reported to significantly reduce seedling growth of oak. The Ca and Mg concentrations in leaves and roots were first reduced at 115 μM Al. Higher solution Al further reduced these to levels associated with deficiency in other dicotyledonous trees. Tissue Al concentrations were not closely correlated with growth.

1975 ◽  
Vol 5 (3) ◽  
pp. 381-386 ◽  
Author(s):  
M. M. Larson

Northern red oak seedlings were top-pruned in the seedbed each month from August until the next March. In late March, all trees were lifted, planted in the greenhouse, and harvested 30 days later. Any top-pruning treatment that directly or indirectly removed the leaves in late summer or early fall markedly reduced root regeneration and initial shoot growth after planting in March. Removal of all the visible buds at any date resulted in increased numbers of new shoots after planting, while pruning stems at the groundline reduced new shoot growth.In additional studies, shoots and roots of trees lifted in March were pruned to various levels before planting. Results indicated that root pruning influenced seedling growth much more than shoot pruning. The amount of new shoot growth was significantly correlated with root weight of seedlings when planted, whether differences in root weight were natural or obtained by pruning. The effects of shoot pruning and root pruning on seedling growth were largely independent of each other.


1978 ◽  
Vol 8 (1) ◽  
pp. 67-72 ◽  
Author(s):  
M. M. Larson

Northern red oak (Quercusrubra L.) seedlings were defoliated to various degrees in the seedbed on September 23, lifted the following April, and planted. Spring shoot growth of completely defoliated trees was about half that of control plants. Partial fall defoliation treatments included removal of upper leaves, lower leaves, terminal halves of leaves, and lateral halves of leaves. Spring shoot growth was related more closely to amount rather than type of leaves removed in the fall. When seedlings were lifted in the spring, total weight and root carbohydrate content were similar between treatments.In a second study, some seedlings were completely defoliated on September 4th, and others were subjected to total darkness for monthly or longer periods beginning in August. Nearly all leaves abscised during dark treatments. Defoliated trees and trees kept dark during August or September remained small and had low root carbohydrate contents when planted. Also, root regeneration was poor and shoot growth averaged one-third or less than that of control trees. Spring growth of seedlings increased as dark treatments were applied later in the fall, although shoot growth of October and November dark trees remained lower than that of control trees.It is suggested that some factor, possibly cytokinin, is translocated from late-season foliage and promotes seedling growth in the spring.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 781-785 ◽  
Author(s):  
Megh Singh ◽  
Nagi Reddy Achhireddy

The germination of milkweedvine (Morrenia odorataLindl. ♯3MONOD) seed at 20 or 25 C was unaffected by a 12-h photoperiod. The 12-h photoperiod, however, decreased germination by 50% at 15 C. No germination occurred at 35 C regardless of photoperiod. By alternating 35 C for 12 h with 20 C for 12 h, the germination percentage was 57%. Seedling growth was maximum at alternating temperatures of 30/20 C. Optimum pH for germination and seedling growth was 7 and germination did not occur at pH levels below 6. Seed germination declined steadily at osmotic stress below −0.12 MPa; no germination occurred at −0.5 MPa. Seedling growth was not influenced by osmotic stress down to −0.18 MPa. Germination percentages of seeds kept under aerated water and nonaerated water were similar, but the seedling growth was greater in aerated water. Seedling emergence was maximum from depths of 0.5 to 2.5 cm, but no seedling emerged from 0 or 10 cm. Planting depth was negatively correlated (r = −0.7) with shoot growth but positively correlated (r = +0.98) to root growth.


1990 ◽  
Vol 17 (4) ◽  
pp. 451 ◽  
Author(s):  
FW Smith ◽  
WA Jackson ◽  
PJV Berg

Partitioning and net transfer of phosphorus between shoots and roots in the tropical forage legume Stylosanthes hamata cv. Verano during the development of phosphorus deficiency has been studied. Plants were stressed by either growing them in dilute flowing culture on continuously maintained external phosphorus concentrations that were inadequate for maximal growth, or by transferring plants of varying phosphorus status to phosphorus-free media. An external phosphorus concentration of 1 �M P was found to be just adequate for maximal growth of S. hamata. Phosphorus stress caused rapid and substantial increases in root weight percentage. It is proposed that this represents an important adaptive mechanism for maximising phosphorus uptake by S. hamata growing in phosphorus-deficient soils. Roots contained the minimum proportion of the plant's phosphorus content when root phosphorus concentrations were 8-10 �mol P g-1 root, and shoot phosphorus concentrations were 16-20 �mol P g-1 shoot. When tissue concentrations were less than these values, plants suffered from phosphorus stress and phosphorus was either preferentially retained by the roots or rapidly transferred from shoots to roots, reducing the growth rates of shoots, but permitting root growth to continue. Upon reducing the external phosphorus supply to plants whose root phosphorus concentrations exceeded 8 to 10 �mol P g-1 root, excess phosphorus was rapidly transferred from the root to the shoot to maintain shoot growth rates. The mobility of phospborus within the plant, and the apparent lack of any delay in transferring phosphorus from shoots to roots as phosphorus stress developed, represent another adaptive feature that is likely to be important to the successful growth of S. hamata in low phosphorus soils. When the phosphorus supply was limited, the plant's resources were directed toward maintaining root growth. Even extremely phosphorus deficient plants, in which shoot growth had ceased, maintained linear rates of root growth. These linear rates were related to the total phosphorus content of the plant. In the latter stages of phosphorus deprivation, linear rates of root growth were maintained by remobilisation of phosphorus from the older parts of the root system to sustain the phosphorus supply to the root meristems.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 547
Author(s):  
Kaile Mai ◽  
Roger A. Williams

Oak regeneration failures have been causing a slow decline in the occurrence of oak forest ecosystems in eastern North America. Accordingly, our study sought to determine a means of creating more vigorous and competitive oak seedlings by the addition of manganese (Mn) fertilizers. Seeds of northern red oak (Quercus rubra L.), chestnut oak (Quercus prinus L.), and red maple (Acer rubrum L.), one of oak’s major competitors in North America oak forest ecosystems, were sown in 0.7 liter pots that contained a growing medium mixture of peat moss, perlite, and sand in a ratio of 2:1:2, and germinated in a greenhouse. Three different chemical compound Mn fertilizer treatments—manganese chloride (0.16 mg L−1 Mn, MnCl2·4H2O), nanoparticle manganese in the form of manganese hydroxide (0.01 mg/L Mn, nanoparticle Mn(OH)2), and manganese hydroxide (0.01 mg L−1 Mn, Mn(OH)2)—and a treatment of Hoagland solution were applied to the planted seed. These treatments were compared to a control consisting of water, and treatments were applied twice a week over a 12 week period. Germination rates and seedling growth were measured over this period of time. At the end of 12 weeks seedlings were harvested, separated into roots, stem, and foliage for the purpose of biomass and nutrient analysis by seedling component. Northern red oak displayed a 100% germination success rate with MnCl2·4H2O and Mn(OH)2 treatments, while red maple germination was reduced with the MnCl2·4H2O and nanoparticle Mn(OH)2 treatments with only a 32% and 24% germination rate, respectively. The MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of red maple with a 191.6% increase; however, the MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of northern red oak and chestnut oak with an increase of 503.7% and 339.5%, respectively. The greatest increase in overall seedling size for northern red oak was with the Mn(OH)2 treatment at 507.2%, and 601.2% for chestnut oak with the nanoparticle Mn(OH)2 treatment. MnCl2·4H2O treatment significantly increased the oak foliar nitrogen (N) content. It appears that the application of Mn fertilizer can increase the germination and growth of these oak species while suppressing or having a lesser effect on red maple, thus creating a competitive advantage for oak over its competitor.


1988 ◽  
Vol 39 (3) ◽  
pp. 319 ◽  
Author(s):  
RC Bruce ◽  
LA Warrell ◽  
DG Edwards ◽  
LC Bell

In the course of three experiments, soybean (Glycerine max (L.) Merr.) cv. Forrest was grown in 21 soils (four surface soils and 17 subsoils) amended with liming materials (CaCO3 and Mg CO3) and soluble Ca salts (CaSO4.2H20 and CaCl2.2H2O). In most soils, the soluble salts increased concentrations and activities of Al species in solution to levels that restricted root growth, and MgCO3, induced a Ca limitation to root growth. Root lengths after three days were related to so11 and soil solution attributes.Suitable diagnostic indices for the prediction of Ca limitations to root growth were either Ca saturation of the effective cation exchange capacity or Ca activity ratio of the soil solution, which was defined as the ratio of the activity of Ca to the sum of the activities of Ca, Mg, Na, and K. Values corresponding to 90% relative root length (RRL) of soybean were 0.05 for the Ca activity ratio and 11% for Ca saturation. Calcium activity and Ca concentration in the soil solution and exchangeable Ca were less useful for this purpose.Soil Al saturation was not a good predictor of Al toxicity, but soil solution measurements were. The activities of Al3+ and AlOH2+ gave the best associations with RRL, and values corresponding to 90% RRL were 4 8M and 0.5 8M respectively. The results suggested that Al(OH)3� , Al(OH)2+, and AlSO4+, were not toxic species. Soil solution pH and soil pH measured in water were more sensitive indicators of root growth than soil pH measured in 0.01 M CaCl2.Using a Ca activity ratio of 0.05 and an Al3+ activity of 4 8M as diagnostic indices, none of the 20 soils in two experiments were toxic in Al, while 13 (all subsoils) were deficient in Ca. Thus the first limitation on root growth was Ca deficiency and not Al toxicity, in spite of high Al saturations and relatively low pH in these soils. However, Al toxicity could be induced by increasing the ionic strengths of soil solutions.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 941-943 ◽  
Author(s):  
A.M. Armitage ◽  
P.M. Gross

A copper hydroxide formulation (0%, 3.5%, 7%, 11% Cu) was applied to plug trays before sowing seeds of Impatiens ×hybrida L. `Accent Red', Pelargonium ×hortorum Bailey `Scarlet Elite', and Petunia ×hybrida Hort.Vilm.-Andr. `Ultra White' to investigate the influence of the formulations on ease of transplant, root growth, and shoot growth. These factors also were investigated in Cu-treated seedling plugs held past optimal transplanting stage. Root spiraling and seedling height at transplant were reduced for all taxa grown in Cu-treated trays, regardless of concentration, compared to seedlings from nontreated trays. Root weight and shoot weight responses to Cu treatments at transplant and at flowering varied among taxa. Mature heights of all taxa were unaffected by Cu treatment; however, flowering date was delayed for impatiens and geraniums transplanted at optimal time from Cu-treated trays. In general, petunias displayed little response to Cu treatment. Root spiraling was reduced and plugs were removed more easily from Cu-treated than from control trays stored for 2 weeks in the greenhouse, but flowering time was delayed for 12 days for impatiens and petunias and 21 days for geraniums, regardless of Cu concentration.


2004 ◽  
Vol 22 (2) ◽  
pp. 75-79
Author(s):  
Lisa E. Richardson-Calfee ◽  
J. Roger Harris ◽  
Jody K. Fanelli

Abstract Seasonal effects on transplant establishment of balled-and-burlapped (B&B) shade trees are not well documented. Early post-transplant root growth and aboveground growth over a 3-year period were therefore determined for November-and March-transplanted northern red oak (Quercus rubra L.) and willow oak (Q. phellos L.). Survival of red oak was 100% for both treatments. Survival of November-and March-transplanted willow oak was 67% and 83%, respectively. No new root growth was observed outside or within the root balls of either species upon excavation in January. New root growth was evident when trees of both species were excavated in April, indicating that root system regeneration of November-transplanted trees occurs in late winter and/or early spring, not late fall and/or early winter. November-transplanted red oak, but not willow oak, grew more roots by spring bud break than March-transplanted trees. However, little difference in height growth and trunk expansion was evident between the November-and March-transplanted red oaks throughout the 3 years following transplant. While height growth of willow oak was nearly identical between treatments after 3 years, November transplants exhibited greater trunk diameter increase for all 3 years. Overall, season of transplant had little effect on height and trunk diameter increase of red oak, even though November-transplanted trees grew more roots prior to the first bud break following transplant. Among the willow oaks that survived, season of transplant had little effect on new root growth and height growth, but November transplanting resulted in greater trunk expansion. However, when the mortality rate of November-transplanted willow oak is taken into consideration, March may be a better time to transplant willow oak in climates similar to southwest Virginia.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 744c-744 ◽  
Author(s):  
Brian P. Gibbons ◽  
Timothy J. Smalley ◽  
Allan M. Armitage

Three biostimulants, Grow-plex (Menefee Mining Corp., Dallas), Roots 2 (LISA Product Corp., Independence, Mo.), and Root n' Shoot (Natural Organic Products International, Mount Dora, Fla.) were applied to transplanted plugs of Salvia splendens `Empire Red' and Begonia semperflorens `Varsity Pink' and `Varsity Brite Scarlet'. Root n' Shoot drench (0.78%) solutions at transplant increased root weight, but a 1.56% solution decreased root weight of Salvia, although shoot growth was unaffected. Root n' Shoot decreased shoot growth of Begonia, but did not affect root growth. Roots 2 treatments (0.25% or 2.00%) increased shoot weight of Salvia, but did not affect the root growth of Salvia or the root or shoot growth of Begonia. Spraying Grow-plex (0.78% or 1.56%) to runoff at transplanting and 2 weeks after transplanting did not affect root or shoot growth of Salvia or Begonia.


1998 ◽  
Vol 15 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Minyi Zhou ◽  
Terry L. Sharik ◽  
Martin F. Jurgensen ◽  
Dana L. Richter ◽  
Margaret R. Gale ◽  
...  

Abstract Growth of northern red oak (Quercus rubra L.) seedlings in relation to colonization by indigenous ectomycorrhizal (ECM) fungi was studied in oak and pine stands in northern Lower Michigan that were subjected to overstory and understory manipulations. Two stand types (oak and pine), three blocks of each stand type, four canopy cover treatments (clearcut, 25% cover (50% cover in the first year), 75% cover and uncut), and two understory treatments (shrub removal and untreated control) were involved in the experiment. Northern red oak acorns from a common seed source were sown in May 1991 to simulate natural regeneration. Seedling growth and its relation to percent ECM were evaluated for the first two growing seasons. A significantly larger root-collar diameter of northern red oak seedlings was found in pine stands than in oak stands for the first growing season (P < 0.001). However, this difference could not be explained by overall ECM colonization. Seedling growth and ECM colonization were not affected by the shrub removal treatment during the first two growing seasons. In contrast, northern red oak seedling size and weight were strongly influenced by the overstory treatment, with lower levels of canopy cover resulting in larger seedlings. Seedlings had the greatest percent ECM in the partial cover treatment (25-50%) and the lowest percent ECM in the clearcut. After accounting for the effects of canopy cover, the relationship between total biomass of northern red oak seedlings and percent ECM was positively correlated (P = 0.001) during the first growing season and negatively correlated (P = 0.038) during the second growing season. A positive relationship between root/shoot ratio and percent ECM also existed in the first year (P = 0.003) in both oak and pine stands, but only in the oak stands in the second year (P = 0.039). These results indicate that ECM promoted more root development than shoot development, particularly underpartial canopy cover (25%-50%) treatments, where the greatest percent ECM and largest root/shoot ratio were found. Moreover, our results suggest that these partial canopy cover treatments provide a favorable balance between ECM abundance and northern red oak seedling development in both oak and pine stands on intermediate quality sites, and may lead to northern red oak regeneration success on such sites. North. J. Appl. For. 15(4):182-190.


Sign in / Sign up

Export Citation Format

Share Document